Théorème de Pythagore - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Démonstrations

C’est sans doute le théorème qui possède le plus grand nombre de preuves connues (la loi de réciprocité quadratique se distingue aussi dans ce domaine). Une des plus anciennes dont on a gardé trace est celle d’Euclide qui utilise la propriété du cisaillement, mais il existe aussi d’autres preuves, uniquement visuelles fondées sur des puzzles, c’est le cas de la justification chinoise du théorème de Gougu. Des preuves modernes mettant en jeu des propriétés algébriques ont été développées ultérieurement. Une autre utilisant des similitudes est parfois attribuée à Pythagore. Il existe de nombreuses autres démonstrations du théorème de Pythagore ; le vingtième président des États-Unis, James Abram Garfield en développa une lui-même, très voisine de la preuve moderne. L’une des plus intéressantes est la preuve calculatoire basée sur la formule d'Euler.

La preuve selon Euclide

La démonstration du théorème utilise deux propositions, déjà démontrées dans les Éléments. La première est la proposition XXXV du 1er livre :

« Les parallélogrammes constitués sur une même base, et entre mêmes parallèles, sont égaux entre eux. »

Prop35.png

Considérons les deux parallélogrammes ABCD et BCFE, les deux sur la même base, BC, et entre les mêmes parallèles, BC et AF. On a AD qui est égal à BC (car ce sont les deux bases du parallélogramme ABCD), et BC qui est égal à EF (car ce sont les deux bases du parallélogramme BCFE), alors AD est égal à EF. Or, il n’y a que trois possibilités (montrées dans l’image) pour la position du point E relatif à D ; E peut être à la gauche de D, au point D, ou à la droite de D. Examinons chaque cas:

  1. Si E tombe à la gauche de D, ED est la partie commune de AD et EF, alors il est possible de vérifier que AD et EF sont égaux. Mais notez que les côtés AB et DC sont égaux, car ils sont des côtés opposés du parallélogramme ABCD. Aussi, parce que les points A, E, D et F sont colinéaires, les angles BAE et CDF sont égaux. Par conséquent, les triangles BAE et CDF sont égaux, parce que deux côtés de l’un sont égaux à deux côtés de l’autre, et un angle est commun. Donc les parallélogrammes ABCD et CBEF ne sont que des différents rangements du trapèze BEDC et le triangle BAE (ou CDF). CQFD
  2. Si E tombe au point D, on trouve d’une façon semblable à 1 que les triangles BAE et CDF sont égaux, et alors qu’il est possible d’obtenir les parallélogrammes ABCD et BCFE en ajoutant à la partie commune BCD le triangle BAE (ou bien CDF). CQFD
  3. Si E tombe à la droite de D, notez que, parce que les segments AD et EF sont égaux, en ajoutant à chacun la ligne DE, nous trouvons que AE et DF sont égaux. Par un argument semblable à ceux utilisés dans les cas 1 et 2, il est possible de prouver que les triangles BAE et CDF, et par conséquent les trapèzes BADG et CGEF, sont égaux. Alors, il est évident que les parallélogrammes ABCD et CBEF sont obtenus en ajoutant au triangle commun BCG le trapèze BADG (ou CGEF). CQFD

Le remplacement d’un parallélogramme par un autre de même base et même hauteur, justifié par cette proposition, est connu en mathématiques sous le nom de cisaillement. Le cisaillement sera très important dans la preuve de la proposition XLI :

Prop41.png

« Si un parallélogramme, et un triangle ont une même base, et sont entre mêmes parallèles ; le parallélogramme sera double du triangle. »

Considérons un parallélogramme ABCD, et soit E un point sur l’extension de AD. Nous voulons démontrer que l’aire de ABCD est deux fois l’aire de BEC. Traçant la diagonale AC, nous voyons que l’aire de ABCD est deux fois l’aire de ABC. Mais, l’aire du triangle ABC est égale à l’aire du triangle BEC, car ils ont la même base. Alors, deux fois l’aire de BEC égale deux fois l’aire de ABC, c’est-à-dire l’aire de ABCD. Nous avons montré que ABCD (qui est double de ABC) est double de BEC. CQFD

Démonstration d'Euclide Animation de la démonstration d'Euclide. Les demi-carrés des côtés de l'angle droit se déforment, pivotent puis se déforment pour remplir la moitié du carré de l'hypoténuse

Maintenant, nous pouvons passer à la démonstration du théorème en tant que telle. Considérons le triangle ABC rectangle en A. Soient BCED, ABFG et ACIH les carrés des côtés BC, AB et AC respectivement. Soit J l’intersection de AK et de BC. Ce que nous voulons démontrer est que l’aire de BCED est égale à de la somme des aires de ABFG et ACIH. Nous prouvons ce fait en démontrant que l’aire du carré ABFG est égale à l’aire du rectangle BJKD et que l’aire du carré ACIH est égale à l’aire du rectangle CEKJ. Démontrons la première égalité, notons que les côtés FB et BC sont égaux aux côtés AB et BD, respectivement. Parce que les angles ABF et CBD sont égaux, les angles FBC (FBA + ABC) et ABD (ABC + CBD) sont égaux. Par conséquent, les triangles FBC et ABD sont égaux aussi. Or, notez que, par la proposition XLI, l’aire du carré ABFG est double de celle du triangle FBC et que l’aire du rectangle BJKD est double de celle du triangle ABD. Comme FBC et ABD sont égaux, l’aire de ABFG est bien égale à celle de BJKD. La seconde égalité se prouve d’une manière semblable : observant que IC et CB égalent AC et CE, respectivement, et que l’angle ICB égale l’angle ACE, nous concluons que les triangles ICB et ACE sont égaux. Puis, sachant que l’aire du carré ACIH est double de celle de ICB et que l’aire du rectangle CEKJ est double de celle de ACE, et que le triangle ICB est égal au triangle ACE, l’aire de ACIH est donc égale à l’aire de CEKJ. En conséquence, l’aire de BCED, égale à la somme de l’aire de BJKD et de celle de CEKJ, est bien égale à la somme de l’aire de ABFG et de celle de ACIH. CQFD. Cette démonstration peut se généraliser pour les autres triangles (théorème de Clairaut). Cette propriété peut aussi s'appliquer à d'autres figures que des carrés (paragraphe suivant)

Généralisation à d’autres figures que des carrés

Propriété des lunules

Une autre généralisation de la démonstration du théorème de Pythagore fut déjà énoncée par Euclide dans ses Éléments (Proposition 31 du livre VI) :

« Dans les triangles rectangles, la figure construite sur le côté qui sous-tend l’angle droit, est égale aux figures semblables et semblablement décrites sur les côtés qui comprennent l’angle droit. »

Autrement dit :

« Si on érige des figures semblables sur les côtés d’un triangle droit, alors la somme des aires des deux plus petites figures égale l’aire de la plus grande. »

Cette propriété permet de montrer que l’aire du triangle rectangle est égale à la somme des aires des lunules dessinées sur chaque côté de l’angle droit (théorème des deux lunules). Cette idée a été utilisée par Henri Lebesgue pour fournir une démonstration simplissime du théorème. Il choisit, comme figures semblables, le triangle rectangle de départ en remarquant que la hauteur relative à l’hypoténuse décompose le triangle initial en deux triangles semblables. Cette démonstration peut être comparée avec la démonstration avec des similitudes ci-dessous.

Une preuve du théorème de Gougu (Chine)

Animation du puzzle de Gougu

Le théorème de Gougu de gou (base) et gu(hauteur) est reconstitué d’après les commentaires du mathématicien chinois Liu Hui (IIIe siècle apr. J.-C.) sur le JiuZhang SuanShu 九章算術 « neuf chapitres d'Arithmétique » (206 av.–220 apr. J.-C.), et le Zhoubi Suanjian 周髀算經, « l’ombre des cycles, livre de calculs » (un livre d’astronomie). Le neuvième chapitre du livre Les neuf chapitres, classique mathématique de la chine ancienne, s’ouvre sur un énoncé du théorème de Pythagore avec le commentaire laconique : : « la base multipliée par elle-même fait un carré vermillon, la hauteur multipliée par elle même un carré bleu-vert et l’on fait en sorte que ce qui entre et ce qui sort se compense l’un l’autre ». Cette preuve utilise le principe du puzzle : deux surfaces égales après découpage fini et recomposition ont même aire. Euclide, dans sa propriété de cisaillement, utilise le même principe.

Dans la figure ci-contre, le triangle rectangle est tracé en gras, le carré de la hauteur a été tracé à l’extérieur du triangle, le carré de la base et celui de l’hypoténuse sont tournés vers le triangle. Les parties des carrés des côtés de l’angle droit qui dépassent du carré de l’hypoténuse ont été découpées et replacées à l’intérieur de ce carré. Le triangle rouge est égal au triangle de départ. Le triangle jaune a pour grand côté de l’angle droit le petit côté du triangle de départ et a mêmes angles que le triangle initial. Le triangle bleu a pour grand côté de l’angle droit, la différence des côtés du triangle initial et a mêmes angles que le triangle initial.

Figure de l’hypoténuse

L’apparition d’une illustration pour cette procédure est très tardive. Selon Karine Chemla, l’absence d’illustration serait due au fait que la figure de référence était déjà connue et correspondrait à la propriété liant le carré de l’hypoténuse avec le carré de la différence des côtés et l’aire du triangle initial :

c2 = (ab)2 + 2ab.

Une preuve moderne

Pythagoralg.png Pythagorean proof.svg
Considérons un triangle rectangle dont les côtés sont de longueurs a, b et c. Ensuite recopions ce triangle trois fois et plaçons le triangle et ses copies de manière à avoir le côté a de chacun aligné au côté b d’un autre, et pour que les jambes des triangles forment un carré dont le côté est a + b, comme dans l’image. Puis, nous essayons de trouver l’aire du carré formé par les côtés c. Évidemment, c’est c2, mais c’est aussi égal à la différence entre l’aire du carré extérieur et la somme des aires des triangles. L’aire du carré est (a + b)2 (car son côté est a + b) et l’aire totale des triangles est quatre fois l’aire d’un seul, c’est-à-dire 4(ab / 2), donc la différence est (a + b)2 − 4(ab / 2), ce qu’on peut simplifier comme a2 + 2ab + b2 − 2ab, ou bien a2 + b2. Nous avons démontré que l’aire du carré de côté c est égale à a2 + b2 ; en effet, c2 = a2 + b2. CQFD

Remarque : il faut démontrer que le carré de côté "c" en est bien un. C'est un losange car c'est un quadrilatère ayant 4 côtés de même longueur,. De plus, il possède des angles droits : en effet, la somme d'un angle du quadrilatère et des deux angles qui lui sont adjacents donne un angle plat; alors que la somme de ces deux angles du triangle rectangle donne un angle droit. La figure centrale est donc bien un carré.

Démonstration avec des similitudes

Triangle rectangle avec pied de la hauteur

Il n’y a pas trace de la démonstration qu’aurait conçue Pythagore et les historiens envisagent deux types de démonstrations : ou bien une démonstration fondée sur un découpage comme celui de Gougu ou une démonstration utilisant les proportionnalités des triangles découpés par la hauteur issue de l’angle droit.

Si H est le pied de la hauteur issue de C, les triangles CAB, HAC et HCB sont semblables (par égalités des angles). Le rapport de similitude entre les triangles HAC et CAB est le rapport des hypoténuses AC/AB, de même le rapport de la similitude entre les triangles HCB et CAB est CB/AB. Le rapport des aires est alors égal au carré du rapport de la similitude, soit : \dfrac{A_{HAC}}{A_{CAB}} = \dfrac{AC^2}{AB^2} et \dfrac{A_{HCB}}{A_{CAB}} = \dfrac{BC^2}{AB^2}.

Comme d’autre part la somme des aires des triangles HAC et HCB donne l’aire du triangle CAB, on peut écrire : \dfrac{A_{HAC}}{A_{CAB}}+ \dfrac{A_{HCB}}{A_{CAB}} = \dfrac{AC^2}{AB^2}+ \dfrac{BC^2}{AB^2} = 1. Soit encore : AC2 + BC2 = AB2.CQFD

On peut également proposer une variante plus élémentaire de cette démonstration afin de s’affranchir de la notion d’aire : Le rapport de similitude entre les triangles HAC et CAB implique \dfrac{AH}{AC} = \dfrac{AC}{AB} soit AH \cdot AB = AC^2. De même, le rapport de similitude entre les triangles HCB et CAB implique \dfrac{HB}{CB} = \dfrac{CB}{AB} soit HB \cdot AB = BC^2 en additionnant, il vient (AH+HB) \cdot AB = AB^2 = AC^2 + BC^2. CQFD

Cette démonstration est à rapprocher de celle du théorème de Ptolémée en prenant un rectangle comme quadrilatère.

Page générée en 0.119 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise