Groupe de Galois - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Évariste Galois 1811-1832

En mathématiques, et plus spécifiquement en algèbre dans le cadre de la théorie de Galois, le groupe de Galois d'une extension de corps L sur un corps K est le groupe des automorphismes de corps de L laissant invariant K. Le groupe de Galois est souvent noté Gal(L/K).

Si l'extension possède de bonnes propriétés, c’est-à-dire si elle est séparable et normale, on parle alors d'extension de Galois et les hypothèses du théorème fondamental de la théorie de Galois sont réunies. Il existe alors une bijection entre les sous-corps de L et les sous-groupes du groupe de Galois Gal(L/K).

La correspondance permet une compréhension profonde de la structure de l'extension. Un exemple important est le théorème d'Abel-Ruffini, il donne une condition nécessaire et suffisante de résolution par radicaux d'une équation algébrique.

Histoire

Genèse

Niels Abel 1802-1829

Si l'histoire de la théorie des équations algébriques remonte à la nuit des temps, en revanche l'introduction du concept de groupe date du XVIIIe siècle. Joseph-Louis Lagrange met en évidence la relation entre les propriétés des permutations des racines et la possibilité de résolution d'une équation cubique ou quartique. Paolo Ruffini est le premier à comprendre que l'équation générale et particulièrement l'équation quintique n'admet pas de solution. Sa démonstration reste lacunaire. Les démonstrations de Niels Henrik Abel dans deux articles écrits en 1824 et 1826 passent, après des années d'incompréhension, à la postérité. Cependant la notion de groupe abstrait n'apparaît pas encore et le théorème reste incomplet.

Évariste Galois

Évariste Galois résout définitivement la problématique en proposant une condition nécessaire et suffisante juste pour la résolvabilité de l'équation par radicaux. Son approche subit la même incompréhension que ses prédécesseurs. Ses premiers écrits, présentés à l'Académie des sciences dès 1829, sont définitivement perdus. Un article de l'auteur écrit en 1831 est découvert par Joseph Liouville qui le présente à la communauté scientifique en 1843 en ces termes: « ...J'espère intéresser l'Académie en lui annonçant que dans les papiers d'Évariste Galois j'ai trouvé une solution aussi exacte que profonde de ce beau problème : Étant donnée une équation irréductible décider si elle est ou non résoluble par radicaux. »

L'apport de Galois est majeur, G. Verriest le décrit dans les termes suivants : « le trait de génie de Galois c'est d'avoir découvert que le nœud du problème réside non pas dans la recherche directe des grandeurs à adjoindre, mais dans l'étude de la nature du groupe de l'équation. Ce groupe (...) exprime le degré d'indiscernabilité des racines (...). Ce n'est donc plus le degré d'une équation qui mesure la difficulté de la résoudre mais c'est la nature de son groupe. »

Galois modifie profondément son axe d'analyse par rapport à ses prédécesseurs. Pour la première fois dans l'histoire des mathématiques, il met en évidence une structure abstraite, qu'il appelle groupe de l'équation. C'est une étude sur la théorie des groupes abstraits qui lui permet de montrer qu'il existe des cas non résolubles. Il met ainsi en évidence que le groupe alterné d'ordre cinq ne possède pas les propriétés nécessaires pour être résoluble. Il écrit ainsi « Le plus petit nombre de permutations que puisse avoir un groupe indécomposable quand ce nombre n'est pas premier est 5.4.3. »

Cette démarche, consistant à définir et analyser des structures abstraites et non plus des équations, est des plus fécondes. Elle préfigure ce qu'est devenue l'algèbre. Pour cette raison, Galois est souvent considéré comme un père de l'algèbre moderne.

L'évolution de la théorie

Deux mathématiciens comprennent immédiatement la portée du travail de Galois, Liouville et Augustin Louis Cauchy qui publie dès 1845 un article démontrant le théorème sur les groupes finis portant son nom. Puis Arthur Cayley donne une première définition abstraite de la structure de groupe, indépendante de la notion de permutation. Camille Jordan diffuse largement les idées de Galois. Son livre rend accessible la théorie à un public beaucoup plus vaste en 1870.

La théorie est petit à petit profondément modifiée par des mathématiciens comme Richard Dedekind qui fut le premier à parler de théorie de Galois, Otto Hölder qui démontra son théorème désormais célèbre en 1889 ou Emil Artin qui donne la définition moderne d'un groupe de Galois. Le groupe de Galois est maintenant un groupe d'automorphismes et non un sous-groupe de permutations.

Page générée en 0.143 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise