Weakly interacting massive particles - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs est disponible ici.

En astrophysique, les WIMPs (acronyme anglais pour " particules massives interagissant faiblement ") forment une solution au problème de la matière noire.

Ces particules interagissent très faiblement avec la matière ordinaire (nucléons, électrons), leur section efficace d'interaction est de l'ordre du picobarn. C'est cette très faible interaction, associée à une masse importante (de l'ordre de celle d'un noyau atomique), qui en font un candidat crédible pour la matière noire.

Théorie

Introduction

La matière noire se divise en deux formes : la matière noire baryonique, qui est formée de matière ordinaire (protons, neutrons, électrons) et la matière noire non baryonique, constituée de particules exotiques.

La matière noire non baryonique se divise en deux composantes, d'une part celle dite chaude (ou HDM pour Hot Dark Matter) qui regroupe des particules légères produites en équilibre thermique avec la matière baryonique, et d'autre part celle dite froide (ou CDM pour Cold Dark Matter) regroupant les particules non relativistes au moment du découplage photon-matière. Les WIMPs font partie de cette matière noire non baryonique froide.

Outre leur propriété de faible interaction avec la matière ordinaire, les WIMPs sont de plus caractérisées par leur stabilité. Ces propriétés induisent pour ces particules une abondance relique non négligeable. Cette particule sera par la suite notée χ.

Lorsque l'Univers a une température supérieure à mχ, la particule est en équilibre thermique, sa densité est proportionnelle au cube de la température, l'équilibre est conservé par des réactions d'annihilations en quarks ou leptons et vice-versa.

Quand la température devient inférieure à mχ, leur abondance chute exponentiellement tant que le taux d'annihilation <σAvnχ>, reste supérieur au taux d'expansion de l'Univers H.

Quand <σAvnχ> devient inférieur à H, l'annihilation cesse, la densité des particules se fige, on parle alors de densité relique.

Av est la moyenne du produit de la section efficace totale d'annihilation de &chi &chi en ll (lepton-antilepton) ou qq (quark-antiquark) par leur vitesse relative. L'évolution dans le temps de la densité de WIMPs est décrite par une équation de Boltzmann.

Cette équation est vérifiée aussi bien pour les particules de Dirac que pour celles de Majorana (cas où χ est sa propre antiparticule). Lorsqu'aucune asymétrie particule-antiparticule n'existe, le nombre total de particules plus antiparticules est 2n\chi; ; dans le cas d'une asymétrie, c'est elle qui donne la valeur de la densité relique.

L'équation de Boltzmann donne une solution approchée de la densité actuelle d'une WIMP :

Ωχh2 = mχnχ / ρc = 3 10-27 cm³. s-1 / σAv

Les WIMPS supersymétriques

Le Modèle standard de la physique des particules donne une description de trois des quatre interactions fondamentales de la nature : interaction forte, interaction faible et interaction électromagnétique, les deux dernières étant unifiées en une interaction électrofaible. Il est basé sur l'application de symétries de jauge, le groupe de jauge du modèle étant SU(3C x SU(2)L x U(1)Y.

Les prédictions du Modèle standard sont très bien vérifiées expérimentalement depuis de longues années, mais des points importants restent sans réponse : d'où vient la masse des particules et peut-on unifier toutes les interactions en une seule théorie unifiée ? C'est pour essayer de répondre à ces questions que fut introduite l'idée de la supersymétrie (également appelée SUSY).

Le principal but de la supersymétrie est de permettre un pas vers la grande unification. Elle introduit de fait une unification entre bosons et fermions, soit entre matière et interaction.

Ceci est permis par l'ajout aux générateurs du groupe de Poincaré (translations et rotations d'espace-temps) de N nouveaux générateurs (N pouvant aller jusqu'à 8). Contrairement aux symétries de jauge, ces générateurs changent le spin des particules de valeurs demi-entières, créant ainsi un supermultiplet regroupant bosons et fermions.

Le neutralino

La sparticule la plus légère dans le cadre du MSSM est le plus léger des quatre neutralinos, bien que pour certaines valeurs des paramètres, le sneutrino (super-partenaire du neutrino) puisse être la plus légère des sparticules, mais ce cas est peu favorisé. Le neutralino est une combinaison linéaire de plusieurs sparticules : zino, photino et higgsinos, partenaires supersymétriques respectivement du Z0, du photon, et des bosons de Higgs neutres.

Détection expérimentale

Détection directe des WIMPs

En raison de leur interaction très faible avec la matière, la détection des neutralinos s'avère être difficile. De même que les neutrinos, les neutralinos peuvent traverser la matière constituant le soleil ou la terre sans aucun effet.

On espère ainsi qu'un grand nombre de WIMPs croisant un grand " volume de détection " créerait un certain genre de réactions au moins quelques fois par année. La stratégie générale des expériences de détection des WIMPs est de trouver les systèmes les plus sensibles possibles, permettant d'effectuer des mesures avec de grands volumes. Cette stratégie suit les leçons apprises lors de la découverte et de la détection des neutrinos.

La technique employée par les collaborations française EDELWEISS (CNRS-CEA) installée dans le laboratoire souterrain de Modane (tunnel du Fréjus) et américaine CDMS, installée dans la mine de Soudan, se fonde sur l'utilisation de multiples cristaux refroidis à très basse température (silicium et germanium). Cette technique est actuellement la plus prometteuse pour la mise en évidence du neutralino.

Expériences actuelles

Page générée en 0.049 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise