Un rapport de 2004, repris dans le rapport GEO 2003, présenté aux ministres à l'ONU en 2004, identifie près de 150 zones mortes dans le monde. Un autre rapport, de 2008, dénombrait quant à lui 450 zones mortes.
Klaus Toepfer, directeur exécutif du Programme des Nations unies pour l'environnement (PNUE), notait à cette occasion que si certaines de ces zones sont de superficie réduite (moins d’un km²), d’autres sont devenues très vastes, la plus grande atteignant 70 000 km².
Le nombre et la taille de ces zones augmentent chaque décennie au moins depuis les années 1970 et plus particulièrement depuis la fin des années 1990. Les scientifiques en comptaient en 2003 près de 150 majeures sur la planète, chacune traduisant très probablement des phénomènes graves de dystrophisation marine. Dans certains cas, comme en mer Baltique, en quelques dizaines d'années, toutes les formes de vie supérieure ont disparu, au profit de bactéries très primitives proches de celles qui vivaient il y a plusieurs milliards d'années, avant l'apparition de la vie sur les terres émergées. Une interdiction de la pêche dans tout ou partie de la mer Baltique a été évoquée, mais ne semble pas actuellement politiquement envisageable. La Commission HELCOM tente avec d'autres institutions de limiter ce phénomène à la source en limitant les apports d'engrais et de nutriments sur terre et en étudiant le problème des munitions immergées.
L'observation satellitale du plancton (par exemple par SeaWiFS ; Sea-viewing Wide Field-ofview Sensor actif depuis 1997) montre une forte progression depuis 1998 de 6,6 millions de km² (15 %) (12 X la taille de la France) ; l’Atlantique Nord étant la zone où les déserts océaniques ont progressé le plus vite (+ 8,3 % par an). Le phénomène semble s'accompagner d'une descente vers le sud des populations de marsouins et dauphins.
L'hypothèse la plus consensuelle est que les nutriments d'origine agricole, industrielle et issus des transports, ainsi que des déchets apportés en mer par les fleuves ou les pluies ou qui y ont été directement immergés durant des décennies s'accumulent, se concentrent ou stagnent dans des conditions et zones particulières. Une forte eutrophisation conduit à une dystrophisation et donc à un état d’anoxie qui finit par éloigner et/ou tuer toutes les espèces supérieures dont poissons, crustacés et coquillages nécessaires à la survie d’une part importante de la population humaine. Les herbiers marins sont également dans ces zones mortes.
Les seuils d'hypoxie varient légèrement selon les régions (l'oxygène se dissout mieux dans l'eau froide, et les poissons des régions chaudes ont des besoins parfois moindres en oxygène). On estime généralement qu'il y a hypoxie (chronique, accidentelle ou saisonnière) quand les taux d'oxygène dissous chutent sous les 2 ou 3 milligrammes/litre (mg/L), la normale pour un littoral variant de 5 à 8 milligrammes/litre. Hormis quelques poissons disposant de poumons ou respirant par la peau (anguille, par exemple), la plupart des poissons ont des difficultés respiratoires en dessous de 5 mg/L.
La situation peut brutalement basculer d'une situation apparemment saine et stable vers la mort des écosystèmes les plus riches et complexes, en quelques années parfois.
Des phénomènes complexes liés aux apports de fonte de neige au printemps et aux différences de température et de salinité qui en résultent jouent probablement localement (en mer Baltique par exemple) aussi un rôle mal compris.
La zone morte peut être éloignée de la zone d'où provient la surabondance de nutriments ou le polluant responsable. Le rapport OSPAR QSR 2000 estime que de l'eau enrichie en nutriments et en matière organique peut ainsi être transportée des côtes sud de l'Angleterre et du littoral français de la mer du Nord vers les eaux norvégiennes où elles pourraient être en partie responsables de l'eutrophisation du Skagerrak (zone profonde de la mer Baltique).
Au large du littoral du Cap Perpetua (Oregon), une zone morte a été observée chaque année de 2002 à 2005 et confirmée en 2006 (sur environ 300 miles carrés) puis en 2007. Elle concerne une importante colonne d'eau. Des grands crustacés meurent dans les casiers de pêche. Sur les plages, la mer dépose les cadavres de nombreux animaux morts asphyxiés, dont quantité de crabes. Et pour la première fois, mi-2006, de très faibles teneurs en oxygène étaient également enregistrées dans les eaux côtières jusqu'au large de Washington. Des records d'anoxie ont été mesurés à 180 pieds de fond (jusqu'à 0.46 ml/L d'oxygène dissous), mais aussi à des profondeurs intermédiaires ; 1 ml/L d'oxygène dissous, à 45 pieds (sachant que les poissons et de nombreuses espèces s'asphyxient en dessous de 1,4 ml/L).
Un robot sous-marin a filmé mi-2006 un cimetière de crabes morts et un tapis de vers en décomposition à proximité des récifs de Perpetua au sud de Newport, alors que les pêcheurs rapportaient la présence d’un nombre exceptionnellement élevé de sébastes qui semblent avoir fui la zone morte - dans des secteurs où ils sont habituellement absents. Une nouvelle vidéo en mai 2007 a montré que les sébastes étaient revenus, mais pas les animaux moins mobiles (concombre de mer, actinie, etc.)
L’été 2006, une étude portant sur 12 miles carrés a mis en évidence un taux d’oxygène 6 fois inférieur à la normale dans cette zone. La situation était encore plus grave en 2006, avec une zone morte qui s’est pour la première fois étendue du sud de l’Oregon à l’extrémité de la péninsule olympique de Washington (soit près de 300 miles), touchant également le sanctuaire marin de l’Olympic Coast National Marine Sanctuary.
Dans ce cas précis, l’apport local et massif d’eutrophisants agricoles semble hors de cause, et s’il ne s’agit pas de nitrates perdus par des déchets ou des munitions immergées, la seule explication semble être une conjonction particulière entre trait de côte, changement de l'intensité et de la synchronisation des vents côtiers (changements prévus par les modèles mathématiques du changement climatique dans cette zone) et courants particuliers.
Il semble que vents et courants font remonter du fond une quantité inhabituelle d'eau riches en nutriments, mais très pauvre en oxygène qui forme une vaste zone morte au large. Puis en été, depuis 2002, une configuration également inhabituelle de vents et de courants pousse cette masse d'eau vers la côte où elle asphyxie la faune. Ces eaux dopent la croissance du plancton, provoquant un bloom planctonique et une dystrophisation grave du milieu lorsque ce plancton meurt asphyxié. Les chercheurs n'ont pas pu mettre en évidence de lien avec des cycles tels qu'El Niño.
La température et/ou la salinité sont des co-facteurs qui jouent ; d'abord parce que l'eau tiède perd naturellement son oxygène et ensuite parce que les variations de température et de densité peuvent conduire à des stratifications de couches de températures différentes, certaines pouvant durablement rester très appauvries en oxygène.
Ce phénomène vaut pour certains lacs. Par exemple, le lac artificiel du barrage de Petit-saut en Guyane, qui a noyé des millions d'arbres présente une couche superficielle d'eau douce normalement oxygénée (sur 3 m d'eau environ) où tout paraît normal, au-dessus d'une masse d'eau très appauvrie où la vie est beaucoup plus réduite.