Dans son projet Breakthrough Propulsion Physics Project, clos en 2002, la NASA a identifié deux choses qui doivent arriver, ou des avancées nécessaires, pour rendre le voyage interstellaire possible :
Ces avancées seraient analogues au remplacement des bateaux à voile par les bateaux à vapeur, ou des avions à hélices par les avions à réaction. La notion d'avancée signifie qu'on ne cherche pas une meilleure manière de produire un réacteur, mais une technologie entièrement nouvelle. Cela arrive quand les avantages de la technologie existante diminuent et que le besoin d'une nouvelle technologie se fait sentir.
L'ouvrage collectif Frontiers of propulsion sciences de l'American Institute of Aeronautics and Astronautics (AIAA), publiée en février 2009, fait la synthèse des techniques spéculatives supraluminiques en cours d'étude:
Les projets et théories de voyage interstellaires peuvent se regrouper en deux catégories. La première, qu'on appellera voyage lent, prend beaucoup de temps, souvent plus que la vie d'un être humain. La seconde, qu'on appellera voyage rapide suppose que les problèmes mentionnés dans la section précédente peuvent être résolus.
Les projets de voyage interstellaire lent, tels que le Projet Longshot, se basent généralement sur des techniques de propulsion susceptibles d'être construites dans un futur proche. Par conséquent, les voyages sont extrêmement longs, pouvant durer d'environ un siècle à plusieurs millénaires. Ces voyages seraient alors des allers simples pour installer des colonies. Les systèmes de propulsion requis sont moins théoriques que pour le voyage interstellaire rapide, mais la durée du voyage constitue un énorme obstacle en lui-même. Ci-dessous sont exposées les principales solutions pour ce cas de figure.
Un vaisseau-génération serait assez grand pour contenir une colonie. Les colons vivraient à bord du vaisseau et leurs descendants atterriraient sur la planète de destination. Ces descendants pourraient ensuite établir la colonie, ou s'arrêter simplement pour explorer, puis construire d'autres vaisseaux pour continuer l'expédition. Les vaisseaux-générations ont longtemps été un sujet populaire en science-fiction ; cependant, ces histoires mettent souvent en relief les problèmes dus à la détérioration de la culture des colons nés sur le vaisseau.
Les vaisseaux-générations ne sont pas faisables actuellement, à la fois à cause de la taille énorme qu'ils devraient avoir et parce qu'un tel milieu fermé et auto-suffisant serait difficile à créer. Des écosystèmes artificiels fermés, comme Biosphère II et surtout MELiSSA de l'ESA, ont été construits afin d'étudier les difficultés techniques de ce genre de système, avec des résultats mitigés.
Au-delà des difficultés techniques, un des écueils les plus importants auquel se heurte ce genre de projet réside dans le facteur humain. En effet, comment motiver une population suffisamment nombreuse et diversifiée, ceci afin de limiter au maximum l'appauvrissement de son capital génétique, à s'embarquer dans un voyage dont, en raison de sa longueur, elle ne connaîtra jamais la fin, à engendrer une deuxième génération d'individus et à lui transmettre intacts les buts et les motivations de l'entreprise, sachant que seule la troisième ou la quatrième génération aura une chance, hypothétique, de parvenir à destination.
Les scientifiques et les auteurs de science-fiction ont proposé des théories variées sur l'animation suspendue. Cela inclut l'hibernation humaine ou la cryogénie. Bien qu'aucune des deux méthodes ne soit actuellement utilisable, elles laissent envisager la possibilité de « vaisseaux-sommeil » où les passagers sont conservés en suspension pendant la longue durée du voyage.
Une variante de cette possibilité est basée sur le développement de techniques rallongeant l'espérance de vie humaine, comme le projet SENS du docteur Aubrey de Grey. Si l'équipage du vaisseau avait une espérance de vie de plusieurs millénaires, il serait possible de traverser les distances interstellaires sans avoir besoin de remplacer l'équipage de génération en génération. Cependant, les effets psychologiques d'un voyage aussi long risqueraient quand même de poser problème.
Une mission spatiale robotisée transportant un grand nombre d'embryons humains congelés constitue une autre possibilité théorique. Cette méthode de colonisation nécessite, entre autres, le développement d'un utérus humain artificiel, la détection préalable d'une planète habitable de type terrestre, et des avancées dans le domaine des robots mobiles autonomes. Il va sans dire que cette hypothèse, si tant est qu'elle soit réalisable un jour, ne prend pas en compte le risque de créer des générations d'humains psychotiques car conçus, éduqués et élevés par des machines.
La possibilité d'avoir des vaisseaux capables d'atteindre d'autres étoiles rapidement, c'est-à-dire en moins d'une vie humaine, est naturellement plus séduisante. Cependant, cela demanderait des méthodes de propulsion beaucoup plus avancées ou une physique différente.
En 1957, on considérait qu'il était possible de créer des vaisseaux spatiaux de 8 millions de tonnes avec des moteurs à propulsion nucléaire pulsée, capables d'atteindre environ 7 % de la vitesse de la lumière. Le problème d'une telle méthode est qu'elle utilise des explosions nucléaires comme propulsion, et comprend donc de gros risques de radiations.
Une autre proposition était celle du collecteur Bussard, dans lequel une sorte de godet géant capterait et comprimerait l'hydrogène interstellaire, l'utiliserait dans une réaction de fusion nucléaire et expulserait l'hélium résultant. Comme le carburant serait collecté en route au fur et à mesure, le vaisseau pourrait théoriquement accélérer jusqu'à une vitesse proche de celle de la lumière. Proposé en 1960, il fit l'objet de calculs ultérieurs avec une meilleure estimation, qui suggèrent que la poussée générée serait inférieure à la traînée causée par la forme du collecteur. Éventuellement, un appareil de type réacteur, stabilisé par un gyroscope, pourrait permettre à la poussée de contrecarrer la traînée.
Des fusées à fusion nucléaire pourraient atteindre une vitesse équivalente à environ 10 % de celle de la lumière. Une voile solaire alimentée par des lasers massifs pourrait potentiellement atteindre une vitesse similaire, voire supérieure. Enfin, si des sources d'énergie et des moyens de production efficaces permettent de créer de l'antimatière en quantité suffisante, il serait théoriquement possible d'atteindre des vitesses proches de celle de la lumière, où la dilatation du temps diminuerait considérablement le temps de voyage perçu. Même si on n'atteint que 10 % de la vitesse de la lumière, cela permettrait d'atteindre Proxima Centauri en 42 ans.
Protéger des poussières et des gaz du milieu interstellaire un vaisseau voyageant à une vitesse comparable à celle de la lumière constituerait un problème sérieux.
Si des entités physiques pouvaient être transmises en tant qu'informations et reconstruites sur place, voyager exactement à la vitesse de la lumière serait possible. A noter que d'après la relativité générale, l'information ne peut pas voyager plus vite que la lumière. L'augmentation de vitesse comparée au voyage infraluminique serait minimale pour les observateurs extérieurs, mais pour les voyageurs, le voyage serait instantané.
Encoder, envoyer puis reconstruire une description atome par atome, par exemple d'un corps humain, est une perspective intimidante, mais il pourrait être suffisant d'envoyer une sorte de logiciel qui recrée le schéma neurologique d'une personne. Cela suppose que le récepteur ou le reconstructeur ait été envoyé préalablement par des moyens plus conventionnels.
Les scientifiques et les auteurs de science-fiction ont émis un certain nombre de moyens théoriques de dépasser la vitesse de la lumière. Malheureusement, même la plus vraisemblable de ces théories reste actuellement extrêmement spéculative.
Selon la théorie de la relativité générale, l'espace-temps est courbe. En science-fiction, on peut imaginer d'utiliser alors un « raccourci » d'un point à un autre. La formule suivante basée sur la relativité générale peut permettre de voyager plus vite que la lumière si l'espace-temps est courbe :
En physique, la métrique d'Alcubierre postule que la courbure peut prendre la forme d'une onde, dans laquelle un engin spatial pourrait être transporté dans une « bulle », l'espace-temps se rétractant devant la bulle et s'élargissant derrière. L'onde transporterait alors la bulle d'un point à un autre plus rapidement que la vitesse de la lumière dans un espace-temps non distordu. Cependant, le vaisseau n'irait pas plus vite que la lumière à l'intérieur de sa bulle. L'utilisation de cette méthode comme moyen de transport réalisable a été critiquée. Elle suggérerait également de créer des "autoroutes" spatiales complètement vides, car la distorsion détruirait tout objet situé dans la zone de distorsion
L'utilisation d'un trou de ver est probablement l'option de voyage supraluminique la moins hasardeuse dans l'état actuel de la science. Un trou de ver est une distorsion de l'espace-temps qui, selon la théorie, pourrait relier deux points arbitraires de l'univers dans un pont d'Einstein-Rosen. On ne sait pas encore si l'existence de trous de vers est réellement possible. Il existe des solutions de l'équation de la relativité générale permettant l'existence de trous de vers, mais toutes les solutions connues impliquent des hypothèses — par exemple l'existence de la masse négative — qui pourraient être contraires à la physique.
Il pourrait y avoir deux types de trous de vers permettant le voyage interstellaire. Le premier type viendrait du même processus que les trous noirs : la mort d'une étoile. Des trous de vers de ce type, qui seraient assez sûrs pour que des humains les empruntent, devraient probablement être super-massifs et en rotation, à l'image de Sagittarius A* au centre de la Voie lactée ; des trous noirs plus petits produisent des forces de gravitation intenses qui détruisent tout objet macroscopique y entrant.
Un autre type de trou de ver envisagé est basé sur la gravité quantique. Certains ont supposé l'existence de trous de vers euclidiens qui apparaissent et disparaissent spontanément, qui existent à l'échelle de la constante de Planck ; on pourrait les ouvrir en utilisant de l'énergie négative, mais la quantité d'énergie requise serait immense. Il n'est pas sûr que ce soit théoriquement possible, en l'absence d'une théorie reconnue sur la gravité quantique. Une autre théorie suppose qu'il serait possible d'ouvrir des trous de vers en déchirant la mousse quantique.