Vent - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Utilisations du vent

La plus grande éolienne à axe vertical du Monde, Cap-Chat, Gaspésie, Québec.

Les vents sont une source d’énergie renouvelable, et ont été utilisés par l'Homme à travers les siècles à divers usages, comme les moulins à vent, la navigation à voile, le vol à voile ou plus simplement le séchage. Différents sports utilisent le vent dont le char à voile, le cerf-volant, la planche à voile et le kitesurf. Il sert également à aérer, assainir, rafraîchir les milieux urbains et les bâtiments. Le vent est une de nos plus anciennes sources d'énergie et une grande partie de toutes nos productions tire parti du vent ou lui est adapté. Aujourd'hui encore, il est un intense sujet de recherche car son potentiel d'utilisation demeure encore largement inutilisé tant via des éoliennes que des systèmes de pompe à chaleur ou pour assainir l'air urbain par une urbanisation raisonnée des villes en tenant compte du vent.

Séchage et assainissement

Vue aérienne des marais salants près de Loix-en-Ré

La première utilisation du vent par l'Homme fut simplement l'aération et le séchage. En effet, un lieu où l'air stagne va assez rapidement se charger en odeur mais aussi permettre le développement de différentes maladies et développement de moisissures (s'il y a un minimum d'humidité).

Très vite, l'Homme découvrit que des objets laissés au vent séchaient plus vite, cela est dû à deux phénomènes distincts : d'une part, l'air en mouvement vient frapper l'objet désiré et va donc communiquer une énergie qui permet d'arracher l'humidité à l'objet, poreux ou non, si l'objet est poreux et se laisse traverser par le vent, l'efficacité sera renforcée. D'autre part, l'air et les objets en contact avec celui-ci ont tendance à vouloir équilibrer leur taux d'humidité. Cependant, l'eau, même sous forme de vapeur, a une forte valeur de tension superficielle (comme une bulle d'air dans l'eau) et si elle va se dissiper dans les environs immédiats de l'objet qui sèche, les forces de tension vont globalement créer une bulle d'humidité, et ce d'autant que l'air chargé d'humidité est plus lourd et voit sa montée contrariée par l'air plus froid au-dessus de lui, ce qui crée une colonne de pression locale prenant la forme d'une demi-bulle en l'absence de vent. Le soleil ne va aider ici qu'à augmenter la quantité de vapeur soluble dans l'air. Sans vent, le séchage va s'arrêter même en plein air car la diffusion de l'humidité dans l'air se fera de manière très lente et même freinée par les forces intermoléculaires mais aussi par le fait que l'air ne se sature pas plus en humidité que son point de rosée ne le permet. Ce point de rosée dépend de la température de l'air. La température engendre un mouvement brownien permettant le transfert léger au sein de la masse d'air. Cet effet a été mis en évidence, étudié et très bien calculé dans le séchage du bois. Toute masse d'air est donc hydrophile jusqu'au maximum de son point de rosée. Dans une atmosphère non renouvelé, le séchage ne pourrait s'achever que si la quantité d'eau à extraire était inférieure au point d'équilibre du milieu.

De même, dans le cas des marais salants, le soleil va fournir l'énergie de réchauffement qui optimisera la présence de vapeur d'eau libre en surface de l'eau et augmentera la quantité d'eau captable dans l'air. C'est le vent qui va alors emporter cette eau via l'air déplacé et donc contribuer au séchage en renouvelant l'atmosphère ce qui empêche le milieu d'atteindre son point de saturation.

L'aération est donc également une méthode pour éviter la prolifération d'humidité due aux activités diverses dans un bâtiment, or l'aération dépend de la présence de vent.

Exemples de relation sécheresse d'un bois/paramètres de séchage.

Degré hygrométrie du bois Température Hygrométrie atmosphère
Séchage jusqu'à 50 % 62° 80-85 %
Séchage jusqu'à 40 % 63° 85 %
Séchage jusqu'à 30 % 64° 80 %
Séchage jusqu'à 15 % 68° 50 %

Selon ce tableau, on voit bien que pour sécher un bois jusqu'au bout, il faut renouveler l'atmosphère, sans quoi il ne descendra jamais en dessous d'un certain seuil d'hygrométrie.

Transport aérien

Les montgolfières utilisent le vent pour des petits voyages. Le vent de face augmente la portance lors du décollage d'un avion et augmente la vitesse de ce dernier s'il est dans la même direction que le vol, ce qui aide à l'économie de carburant. Cependant, en règle générale le vent gêne le mouvement des aéronefs lors de voyages aller-retour. En effet soit v la vitesse du vent et soit a la vitesse relative de l'aéronef par rapport à la masse d'air. En vent arrière, la vitesse de l'aéronef est v + a et en vent de face, la vitesse de l'aéronef est v - a. On note que cette quantité peut être négative si v > a. Dans ce cas, l'aéronef ne peut pas revenir à son point de départ.

La vitesse moyenne au cours de l'aller retour est \textstyle {2 / ( {1 \over a+v} + {1 \over a-v}} ) = {a^2 - v^2 \over a}. La perte de performance est du second ordre, ce qui signifie que pour des vents faibles, cette perte de performance est négligeable. Toutefois, en cas de vitesses et/ou directions de vent variables en fonction de l'altitude, les avions à moteur peuvent effectuer des économies de carburant en exploitant ces différentiels. En outre, les planeurs peuvent aussi exploiter ces différentiels de vitesse de vent en effectuant un piqué dos au vent et une ressource face au vent à la manière de certains oiseaux à la surface de la mer. Comme la vitesse du vent augmente avec l'altitude, le planeur peut gagner de l'énergie de cette manière. Il a été prouvé qu'un gradient de 0,03 m/s par mètre est suffisant.

Le système le plus efficace actuellement est celui du cerf-volant (ou du parachute ascensionnel). La force du vent tend à faire monter l'engin si celui-ci est face au vent. Les planeurs peuvent aussi directement utiliser l'énergie éolienne en effectuant un vol de pente. Lorsque le vent rencontre une chaîne de montagnes continue, la masse d'air doit s'élever. Ceci est aussi vrai pour les parapentes et les deltaplanes. En règle générale, le planeur ayant le taux de chute le plus faible sera le plus efficace pour exploiter le vol de pente et des pilotes ont ainsi pu parcourir des distances de plus de 1 000 km. Dans certains cas, le parapente peut être plus efficace car il pourra exploiter des ascendances de petite dimension grâce à sa vitesse réduite. Cependant, le fait que seuls certains lieux géographiques et saisons soient propices à leur utilisation les cantonnent essentiellement à un loisir et pas à un mode de transport.

Les zones de cisaillement des vents causées par des conditions météorologiques diverses peuvent devenir extrêmement dangereuses pour les avions et leurs passagers.

Transport maritime

Vue de voiles d'un bateau actuel.

La marine à voile existe depuis les temps les plus anciens, au Néolithique, avant même la naissance de l'écriture, et s'est perfectionnée jusqu'à nos jours où malgré les simulations par ordinateur, les calculs de profils, les nouveaux matériaux et les essais en soufflerie, les découvertes continuent. Aujourd'hui, dans les pays développés, les bateaux à voile sont essentiellement devenus des bateaux de loisirs, mais il reste encore l'un des modes de locomotion le plus utilisé à travers le monde car simple, propre, nécessitant peu d'entretien et surtout qui se passe de carburant. La marine à voile est intimement liée à toute notre histoire que ce soit pour migrer, peupler, commercer, échanger, communiquer, se battre ou conquérir. L'Homme fit le tour de la Terre dans ces bateaux bien avant l'invention du bateau à vapeur ou autres engins modernes.

Transport terrestre

C'est l'utilisation la plus marginale du vent car assez peu adaptée. Il existe, pour le loisir, des chars à voile essentiellement utilisés dans des grandes plaines mais surtout en bord de mer. Des traîneaux à voile ont parfois été utilisés en zones enneigées et praticables comme les pôles. Les zones terrestres sont souvent très encombrées, pas très planes et avec des vents déformés, la liberté de mouvement réduite et les trajets tortueux rendent donc cet usage compliqué et dangereux. Le traîneau à voile apparaît dans Le Tour du monde en quatre-vingts jours.

Énergie mécanique ou électrique

Schéma d'une éolienne.
Moulins à vent à Fanø.

Depuis l'Antiquité, des moulins à vent convertissent le vent en énergie mécanique pour moudre du grain, presser des produits oléifères, battre le métal ou les fibres et pomper de l'eau. Ils seront introduits en Europe par l'Espagne, grâce aux Maures. Il faudra attendre Zénobe Gramme et sa dynamo en 1869 pour que le moulin puisse donner naissance à l'éolienne. En 1888, Charles F. Brush est le premier à avoir construit une petite éolienne pour alimenter sa maison en électricité, avec un stockage par batterie d'accumulateurs. La première éolienne « industrielle » génératrice d'électricité est développée par le Danois Poul La Cour en 1890, pour fabriquer de l'hydrogène par électrolyse. Les recherches les plus intenses actuellement sur l'utilisation du vent portent sur les éoliennes afin d'augmenter leur rendement en prise sur le vent, résistance aux fluctuations, rendement en production électrique et la meilleure détermination des corridors de vent.

Vent et urbanisme

Aérodynamisme

Le vent interagit avec toute chose, y compris les constructions humaines. Nos villes ont d'ailleurs parfois généré un urbanisme si particulier que certaines grandes places publiques deviennent infréquentables à pied si le vent se lève un peu. Il faut se souvenir que le vent est tel la mer, immense ; le bloquer ne fait que le rendre plus violent mais par contre, on ne peut pas vivre sans lui car il aère, nettoie, contrôle la température et purifie les lieux.

Les différents types d'effets des vents urbains :

  • effet de coin : effet d'écoulement au coin qui coince ou crée une résistance au vent ;
  • effet de sillage : effet de circulation tourbillonnaire en aval d'une construction ;
  • effet de porche : accélération locale du vent suite à une construction sur pilotis ou bien un porche dans une barre construite ;
  • rouleau tourbillonnant : phénomène tourbillonnaire en amont d'une construction ;
  • effet de barre : déviation en vrille d’un vent qui arrive entre 45 et l’axe d’une construction en forme de barre. On peut limiter l’effet en aménageant le toit et les arêtes de la construction ;
  • effet Venturi : pincement du vent qui provoque des aspirations latérales s'il y a des ouvertures à cet endroit ;
  • suite d'immeubles interrompue : perturbation locale créée par l'absence brutale d'une construction dans une suite harmonieuse ;
  • effet du désaxement : quand des bâtiments sont implantés régulièrement mais désaxés les uns des autres, cela crée des pressions locales et aide à éviter l'amplification du vent ;
  • effet des différences de hauteur : toute modification brutale de la topographie engendre des perturbations telles les tours urbaines, certaines places publiques sont désertées au moindre vent à cause de la présence d'une tour qui produira des tourbillons disproportionnés pour le lieu ;
  • effet de canalisation : proche de l'effet venturi ;
  • effet de maille : complexification de l'urbanisation dont l'effet peut être positif ou négatif ;
  • effet de pyramide : que ce soit de manière régulière ou en gradin, la pyramide crée des perturbations mais, en raison de sa forme limite les effets au sol.

Ventilation et correction calorifique

L'homme se sert du vent dans les régions chaudes pour refroidir les habitations, soit en ajourant les murs d'un bâtiment grâce à des fenêtres ornées ou non de grilles ou de musharabia (fermeture d'une ouverture conçue pour laisser passer l'air et la lumière mais ne permettre de voir que depuis l'intérieur) mais également grâce à des conditionnements d'air mécaniques comme les puits à vents ou bagdir qui permettent de puiser un air d'altitude plus frais mais également moins chargé en sable. Ce système est tellement efficace qu'il permet même de fournir en permanence un refroidissement des réservoirs d'eau. Un projet actuellement réalisé reprend ce même principe en Égypte, il s'agit du marché de New Baris. Il permet aussi de faire l'inverse, de réchauffer les habitations en hiver en capturant la chaleur de l'air pour le quartier de Bedzed à Beddington au Royaume-Uni.

Compétition de cerf-volants à Dieppe en 2006.

Loisirs

Le vent est parfois utilisé pour les distractions comme dans les cas des cerf-volants, pour les sports nautiques ou le vol à voile voire dans les vols de montgolfières. Les bulles de savon demandent également un léger vent pour pouvoir être utilisées, tout comme les moulins à vent de plage ou les maquettes de voilier. Le vent sert aussi indirectement en créant des vagues qui seront utilisées pour le surf.

Autres

Il existe certains équipements destinés à produire un son par le vent, tels les mobiles-carillons ou la tuile à loups auvergnate qui était orientée de manière à provoquer un ronflement caractéristique lorsque les vents venaient du nord. Les vents du nord provoquent un refroidissement de la région et diminuent le gibier disponible rendant les loups affamés et donc dangereux pour le bétail et même les hommes, c'était donc un signal d'alerte.

Page générée en 0.567 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise