Vent - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Origine du vent

Les causes principales des grands flux de circulation atmosphérique sont la différence de température entre l’équateur et les pôles, qui cause une différence de pression, et la rotation de la Terre qui dévie le flot d'air qui s'établit entre ces régions. Des différences locales de pression et de températures vont quant à elle donner des circulations particulières comme les brises de mer ou les tornades sous les orages.

Cas général

Diagramme qui montre comment les vents sont déviés pour donner une circulation anti-horaire dans l’hémisphère Nord autour d’une dépression. La force de gradient de pression est en bleu, celle de Coriolis en rouge et le déplacement en noir.

La pression atmosphérique en un point est le résultat du poids de la colonne d’air au-dessus de ce point. Les différences de pression qu’on note sur le globe terrestre sont dues à un réchauffement différentiel entre ces points. En effet, l’angle d’incidence du rayonnement solaire varie de l’équateur aux pôles. Dans le premier cas, il est normal à la surface de la Terre alors que dans le second, il est rasant. Cette variation conditionne le pourcentage d’énergie solaire reçue en chaque point de la surface terrestre. De plus, les nuages reflètent une partie de cette énergie vers l’espace et elle est absorbée différemment selon le type de surface (mer, forêt, neige, etc.).

La différence de pression ainsi créée est la force qui déplace l’air. Si la Terre ne tournait pas sur son axe, la circulation serait donc directe entre les centres de haute et de basse pression. Cependant, cette rotation dévie l’air dans la direction perpendiculaire au déplacement par rapport à un observateur au sol. En fait, c’est l’observateur qui bouge mais on l’appelle quand même force de Coriolis. Elle est proportionnelle à la vitesse de l’air déplacé mais vers la droite dans l’hémisphère Nord et à gauche dans celui du sud.

Lorsque la somme vectorielle de ces deux forces est devenue presque égale mais opposée, la direction du déplacement de l’air se stabilise pour être perpendiculaire au gradient de vent. La petite différence qui subsiste laisse une accélération vers la plus basse pression, la direction du vent reste donc orientée un peu plus vers les basses pressions ce qui fait que le vent tourne autour des systèmes météorologiques. Aux forces de pression et de Coriolis, il faut ajouter la friction près du sol et la force centrifuge de courbure du flux pour correctement évaluer le vent dans le cas général.

À grande échelle dans l'hémisphère nord, les vents tournent donc dans le sens horaire autour d'un anticyclone, et anti-horaire autour des dépressions. L'inverse est vrai pour l'hémisphère sud où la force de Coriolis est inverse. On peut déterminer notre position entre ces deux types de systèmes selon la loi de Buys-Ballot : un observateur situé dans l'hémisphère nord qui se place dos au vent a la dépression à sa gauche et l'anticyclone à sa droite. La position des zones de pressions est inversée dans l'hémisphère sud.

Cas particuliers

Vents locaux à travers le Monde. Ces vents sont généralement créés par des échauffements de terrain ou des effets montagneux.

La force de Coriolis s’exerce sur de longues distances ; elle est nulle à l’équateur et maximale aux pôles. Dans certaines situations, le déplacement d’air ne s’exerce pas sur une distance suffisante pour que cette force ait une influence notable. Le vent est alors causé seulement par le différentiel de pression, la friction et la force centrifuge. Voici quelques cas qui se produisent lorsque la circulation générale des vents est nulle, très faible ou quand on doit tenir compte d'effets locaux:

Effets des montagnes

Effet d'ondulation avec amortissement sur un vent suite à une montagne.

Les montagnes ont différents effets sur les vents. Le premier est l’onde orographique lorsque le vent soufflant perpendiculairement à une barrière montagneuse doit remonter la pente. Si l'environnement est stable, la masse d'air redescendra du côté aval de l'obstacle et entrera en oscillation autour d'une hauteur qui peut être largement supérieure au sommet de celui-ci. Par contre, si l'air est instable, l'air continuera de s'élever, avec ou sans oscillation. Dans ces conditions, la friction et la poussée d'Archimède doivent être prises en compte lors de la modélisation du vent, comme c'est le cas pour le foehn.

L’air froid plus dense en haut d’une montagne y crée une pression plus forte que dans la vallée et provoque un autre effet. Le gradient de pression fait alors dévaler la pente à l’air sur une distance insuffisante pour que la force de Coriolis le dévie. Cela engendre donc un vent dit catabatique. On rencontre ce genre d’effet le plus souvent la nuit. Ils sont également très communs au front d’un glacier, par exemple, sur la côte du Groenland et de l’Antarctique à toute heure.

Le vent anabatique est un vent ascensionnel d'une masse d'air le long d'un relief géographique dû au réchauffement de celui-ci et donc l'opposé du vent précédent. Diverses conditions météorologiques peuvent créer un vent anabatique, mais il s'agit toujours de la formation d'une différence de température entre les masses d’air au-dessus des vallées et celles réchauffées sur leurs pentes qui cause une circulation d’air. Il est donc aussi appelé vent de pente et se produit le plus souvent le jour.

Brises de terre/brises de mer

Brise de terre/brise de mer.

Durant le jour, près des côtes d’un lac ou de la mer, le soleil réchauffe plus rapidement le sol que l’eau. L’air prend donc plus d’expansion sur terre et s’élève créant une pression plus basse que sur le plan d’eau. Une fois encore cette différence de pression se crée sur une distance très faible et ne peut être contrebalancée par les forces de Coriolis. Une brise de mer (lac) s’établit donc. La même chose se produit la nuit mais en direction inverse, la brise de terre.

On observe des différences de pressions jusqu'à deux millibars et proportionnelles aux masses de terre et d'eau en présence. Cette brise peut résister à un autre vent jusque de l'ordre de 15 km/h (8 nœuds) ; au-delà, elle est en général annulée ce qui ne signifiera pas un calme plat mais plutôt un système météo instable. Ceci explique également pourquoi il y a très rarement un calme plat en bord de mer mais aussi des vents plus tourmentés qu'à l'intérieur des terres ou en mer.

Effets des vallées (goulets)

Dans certaines conditions de contraintes, par exemple dans des vallées très encaissées, l’air ne peut que suivre un chemin. Si le gradient de pression devient perpendiculaire à la vallée, le vent sera généré exclusivement par la différence de pression. C'est le vent antitriptique. On trouve aussi des accélérations dans les resserrements par effet Venturi qui donne un « vent de goulet » et un « courant-jet de sortie de vallée » alors que l'air descendant la vallée envahit la plaine.

Effets de méso-échelle

Dans d’autres cas, la balance s’exerce entre la pression et la force centrifuge. C’est le cas des tornades et des tourbillons de poussières où le taux de rotation est trop grand et la surface de la trombe est trop petite pour que la force de Coriolis ait le temps d’agir.

Finalement, dans le cas de nuages convectifs comme les orages, ce n’est pas la différence de pression mais l’instabilité de l’air qui donne les vents. La précipitation ainsi que l’injection d’air froid et sec dans les niveaux moyens amènent une poussée d'Archimède négative (vers le bas) dans le nuage. Cela donne des vents descendants qui forment des fronts de rafales localisés.

Page générée en 0.180 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise