Variété (géométrie) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Construction de variétés

Une même variété peut être construite de différentes manières, chacune mettant en valeur un aspect différent de la variété, menant par conséquent à un point de vue légèrement différent. Pour construire effectivement une variété, il faut disposer d'un matériau de base, d'une (ou d'un ensemble de) variétés. Parmi les modes de construction les plus connus, citons :

  • Le produit cartésien, permettant d'accéder facilement à des variétés de dimensions supérieures ;
  • Le recollement de variétés, permettant en pratique de complexifier la topologie des variétés tout en préservant leur dimension ;
  • Le quotient de variétés, autre moyen de complexifier la topologie, mais avec éventuellement une perte de dimensions.

Variété abstraite construite par recollement

Dans les exemples proposés jusqu'ici, une partie d'un espace vectoriel était munie d'un atlas lui conférant une structure de variété. Il est possible également de considérer des variétés abstraites, c'est-à-dire définies à partir d'une collection d'applications formant un atlas abstrait. La variété est alors construite par assemblage, les ouverts de cartes servant de briques de base pour de telles constructions, et l'atlas donnant les instructions nécessaires aux raccordements. Du fait qu'aucun espace extérieur n'est impliqué, cette construction mène à une vue intrinsèque de la variété.

Construction du cercle et de l'hypersphère par recollement

Un bon exemple de construction intrinsèque est celle du cercle. En se donnant deux droites disjointes, l'une étant décrite par la coordonnée réelle s, et l'autre par la coordonnée t, on assemble les deux en collant (en identifiant) le point de coordonnée t de la deuxième sur le point de coordonnée s=1t de la première (le point t = 0 de la seconde droite n'est identifié avec aucun point de la première droite ; de même pour le point s=0 de la première droite). Cette construction fournit un espace topologique, muni de cartes, qui peut facilement être identifié au cercle plongé dans le plan usuel, muni du deuxième atlas proposé dans l'exemple ci-dessus.

La n-sphère Sn est une généralisation de l'idée de cercle (1-sphère) et de sphère (2-sphere) à des dimensions supérieures. Une n-sphère Sn peut être construite en assemblant deux copies de Rn. L'application de transition est alors définie par

\mathbf{R}^n \setminus \{0\} \to \mathbf{R}^n \setminus \{0\}: x \mapsto x/\|x\|^2.

qui généralise l'exemple du cercle donné précédemment.

Identifier des points d'une variété

La construction est la même en général : la variété est construite en partant d'un atlas abstrait, défini par des ouverts de Rn et des applications de transition compatibles entre elles. Un point de la variété est une classe d'équivalence (opération de collage) de points qui sont associés par les cartes de transition. Cette construction par recollement conduit à une variété qui n'est pas incluse dans un espace de référence, mais définie par elle-même. Ce point de vue abstrait est purement intrinsèque.

L'action d'assembler ces points en un seul, correspond à la notion d'espace quotient. Néanmoins des difficultés topologiques surgissent et il n'y a pas de raison a priori pour qu'un tel espace quotient soit une variété. C'est ce qui explique qu'on introduise des variantes de la notion de variétés, notamment orbifolds, CW-complexes, qui généralisent la notion de variété, ou variétés à singularités coniques, qui généralisent plus spécifiquement la notion de variété différentielle.

L'opération de passage au quotient est une des méthodes fondamentales de construction de variétés, qui dépasse la question du recollement. Une méthode classique d'identification des points est l'utilisation d'une action de groupe sur la variété. Deux points sont identifiés si l'un d'eux est envoyé sur l'autre par un élément du groupe. Sous certaines conditions topologiques, on peut affirmer que l'espace quotient forme une variété. C'est exactement le mode de construction des tores, des espaces projectifs réels, ou des espaces projectifs complexes (à partir d'un plan, d'une n-sphère et d'un espace vectoriel complexe respectivement). Cette construction connue sous le nom de variété quotient recouvre en partie les concepts de revêtement et d'espace homogène. Elle n'est pas davantage développée ici.

Définition par équations

Exemple d'une carte topographique.

Un autre mode de définition classique des variétés est la donnée d'une équation, ou d'un système d'équations. Un des exemples les plus simples est celui du cercle unité, courbe du plan défini par l'équation x2 + y2 = 1 par exemple. La même équation dans l'espace à trois dimensions définit une surface de révolution, à savoir le cylindre. Plus généralement, dans l'espace \R^n\,, en se donnant une équation de la forme F(x1,...xn) = 0, et sous certaines conditions sur la fonction F (vecteur gradient jamais nul), on obtient une variété de dimension n-1, ou hypersurface. Cet ensemble de valeurs s'appelle un ensemble de niveau. Le géographe a l'habitude de les manipuler en cartographiant une région montagneuse : sur les cartes, des courbes sont tracées indiquant des points d'égale altitude. Les cartes obtenues sont appelées cartes topographiques.

En algèbre linéaire, on définit un sous-espace vectoriel de codimension p à l'aide de p formes linéaires. Ces formes linéaires forment une famille linéairement indépendante du dual, et le sous-espace est le lieu des points d'annulation de ces p formes. De même est-il est possible de considérer un système (non linéaire en général) de p équations à n inconnues La situation locale revêt alors une analogie forte avec la résolution d'un système d'équations linéaires. Sous de bonnes hypothèses (à savoir, l'indépendance linéaire des vecteurs gradients), l'ensemble des solutions du système forme une variété de dimension n-p. L'outil de base pour étudier ces questions est le théorème des fonctions implicites, avec les corollaires associés.

Si la condition donnée est locale, c'est que la vérification qu'un ensemble est une sous-variété est locale. De fait, le discours se généralise au monde des variétés. Sous de bonnes hypothèses, un ensemble de fonctions sur une variété permettent d'en définir des sous-variétés. Cette technique est couramment utilisée en pratique.

Enfin, ce mode de définition est le mode de définition général pour les variétés algébriques.

Variété à bord

Un cylindre fini est une variété avec bord.

La définition des variétés interdit la présence de « bord » comme dans le cas d'un disque plein par exemple. Il est possible de définir cependant une notion de « variété à bord », en acceptant des cartes ayant pour domaine des ouverts de \R^{n-1}\times \R_+. Le bord d'une telle variété à bord sera une variété de dimension n-1. Ainsi une sphère pleine, ou boule, est une 3-variété de bord une 2-variété, la sphère.

Assemblage par les bords

Deux variétés à bords peuvent être assemblées en les collant le long d'un bord. Si ceci est fait correctement, le résultat est aussi une variété. De la même manière, deux composantes du bord d'une même variété peuvent être collées. De nouveau, l'assemblage est défini par un homéomorphisme permettant d'identifier les points d'un bord à ceux de l'autre.

Un cylindre fini peut être construit en partant d'un carré [0,1] × [0, 1] et en cousant ensemble deux côtés opposés. Les deux cercles qui forment le bord de la figure obtenue peuvent ensuite être repliés l'un sur l'autre pour former un tore ou une bouteille de Klein.

L'opération de topologie amusante la plus célèbre est certainement celle qui consiste à recoller deux bords d'un carré, mais en renversant l'orientation ; on n'obtient plus alors un cylindre mais un anneau de Möbius, aussi appelé bande de Möbius ou ruban de Möbius, qui est l'exemple standard pour illustrer la notion de variété non orientable. Il s'agit d'une variété à bord dont le bord est un cercle. En recollant un disque le long de ce cercle, on obtient un plan projectif réel. Si le ruban de Möbius peut être visualisé dans R3, le recollement ne peut pas être effectué dans l'espace tridimensionnel : un quatrième degré de liberté est indispensable.

Produit cartésien

De même que le produit cartésien d'espaces vectoriels est un espace vectoriel, le produit cartésien de variétés est aussi une variété. Sa topologie est la topologie produit et un produit cartésien de cartes est par convention une carte pour le produit. Ainsi, un atlas de ce qu'on appelle la variété produit peut être construit à l'aide d'un atlas de chaque facteurs. Si ces atlas définissent une structure différentielle sur les facteurs, l'atlas correspondant définit une structure différentielle sur la variété produit. Ceci est vrai pour toute autre structure définie à l'aide des facteurs. La dimension de la variété produit est la somme des dimensions de ses facteurs. Les produits cartésiens peuvent être utilisés pour construire des tores et des cylindres finis, par exemple : S1 × S1 et S1 × [0, 1], respectivement.

Toutes les variétés ne peuvent pas être écrites à l'aide d'un produit, mais certaines peuvent s'écrire comme une réunion disjointe d'un ensemble de sous-variétés qui a localement la structure d'un produit ; elles portent le nom de feuilletages. Par exemple, l'hypersphère de dimension trois admet un feuilletage remarquable en cercles (disjoints), connu sous le nom de fibration de Hopf, du nom du topologue Heinz Hopf.

Page générée en 0.278 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise