Tycho Brahe - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Principaux travaux

Supernova

SN 1572 (ou Nova de Tycho') est une supernova survenue dans la constellation de Cassiopée, et l’une des rares à avoir été visible à l’œil nu.

Elle fut observée le 11 novembre 1572 par Tycho Brahe, depuis Herrevad Abbey, alors qu’elle était plus brillante que Vénus, avec une magnitude apparente de -4. À partir de mars 1574, sa luminosité était tombée en dessous du seuil de visibilité à l’œil nu.

En fait, il semble que Brahe ne soit pas réellement le premier à l’avoir observée, elle aurait été vue par Wolfgang Schuler dès le 6 novembre 1572, par John Dee et son disciple Thomas Digges, puis par l’astronome italien Francesco Maurolico. Mais Brahe est bel et bien le premier à l’avoir décrite et étudiée en détail.

Depuis l’antiquité le monde au-delà de l’orbite lunaire était éternellement immuable selon un axiome aristotélicien de la vision du monde. D’autres contemporains disaient que l’objet se trouvait entre la Lune et la Terre.

Dans un premier temps Tycho Brahe a fait observer que l’objet n’a pas de parallaxe diurne dans le contexte des étoiles fixes d’arrière plan. Ce qui implique qu’il était au moins plus loin que la Lune et les planètes, qui elles, montrent de telles parallaxes. En outre, il a également constaté que l’objet n’a même pas modifié sa position par rapport aux étoiles fixes sur plusieurs mois, comme le font les planètes. Cela lui donna à penser que l’objet céleste n’était pas une planète, mais une étoile fixe dans le domaine stellaire au-delà de toutes les planètes.

Il publia à ce sujet un petit livre appelé De Stella Nova, De la nouvelle étoile (1573). Nous savons aujourd'hui que cette supernova se trouve à 7 500 années-lumière de la Terre.

L’apparition de la supernova de 1572 est l’un des deux ou trois événements les plus importants dans l’histoire de l’astronomie. La « nouvelle étoile » a contribué à briser les anciens modèles des cieux et à inaugurer une révolution en astronomie. Cette découverte a permis de réaliser de meilleurs classifications astrométriques cataloguées et a rendu nécessaire l'utilisation d'instruments d'observation astronomique plus précis. La Supernova de 1572 est souvent appelée « la supernova Tycho », en raison du vaste travail que Tycho Brahe a accompli.

La grande comète de 1577

Illustration de la grande comète vue de Prague

La grande comète de 1577 (C/1577 V1) est passée près de la Terre pendant l’année 1577. Cet objet céleste fut remarqué dans toute l’Europe et particulièrement par Tycho Brahe. En observant celle-ci, il se convainc de l’erreur d’Aristote qui pensait que ces corps se formaient en dessous de la Lune et dans notre atmosphère. Par ses observations, Tycho démontra qu’elle n’avait pas de parallaxe diurne mesurable, et que cet objet devait se situer bien plus loin de la Terre que la Lune et en dehors de l’atmosphère terrestre.

Un échange de correspondance eut lieu entre les astronomes de l’époque. En observateur neutre, Tycho examina toutes les données recueillies ainsi que les siennes propres. Pour lui le résultat était clair : la comète devait décrire une orbite elliptique autour du soleil bien au-delà de la Lune, recoupant celles des planètes. Il en tira la conséquence que les planètes ne reposaient pas sur des sphères solides transparentes (les fameuses « sphères de cristal  » d'Aristote) que Georg von Purbach avait rétablies dans sa représentation de la sphère céleste. Bien qu’il eût conservé le géocentrisme, il remit en question deux points importants de modèles antiques auxquels certains de ses contemporains étaient encore attachés : la « solidité » des sphères et la circularité du mouvement des astres ; Kepler (1571-1630), son élève et assistant, généralisa le principe des orbites elliptiques à toutes les planètes.

Les instruments

Représentation de la Sphère armillaire de Tycho Brahe

Lors de la conjonction de Jupiter et de Saturne en 1563, Tycho Brahe réalisa que la précision des tables astronomiques disponibles à son époque était insuffisante. Convaincu que celles-ci devaient être améliorées, il s’investit dans le perfectionnement et la création d’instruments de mesure. C’est avec l’arbalestrille qu’il fit ses premières mesures avec une précision limitée. Pour affiner celles-ci, il inventa une sorte de sextant dont l’ouverture se fait sur soixante degrés (d’où son nom). Cette invention lui permit en 1572 de mesurer la position de la supernova située dans la constellation de Cassiopée. Plus tard, en 1581, il fit construire un sextant de un mètre cinquante monté sur un pivot sphérique.

Tycho améliora ou inventa une douzaine d’instruments différents dont certains, avant leur perfectionnement et leur usage en astronomie, furent d’abord utilisés dans la navigation maritime. L’un des plus connus était le quadrant mural d’un rayon de deux mètres avec lequel il était possible de mesurer une déclinaison à dix secondes d’arc près.

Il fit également construire des sphères armillaires dont l’une avait un diamètre de près de trois mètres. Celle-ci servait à mesurer les coordonnées des étoiles dans le ciel le plus précisément possible et à se faire une meilleure représentation du mouvement des corps célestes observés.

Tycho Brahe préfigura la fin de la recherche observationnelle du ciel sans l’aide de la lentille, qui lui permetta un peu plus tard de faire un bond en avant grâce à la lunette astronomique de Galilée et le télescope à miroir concave de Isaac Newton. Sa vigilance et sa persévérance lui permirent de réaliser des mesures précises au moyen de la mise au point d’instruments et de nombreuses conversions utilisant la trigonométrie sphérique. Il est reconnu comme un scientifique de premier plan suite à la précision de ses mesures astronomiques pour l’époque et son catalogue d’étoiles que Johannes Kepler reprendra plus tard pour le compléter.

Le modèle géo-héliocentrique

Dans ce modèle géo-héliocentrique de Tycho Brahe, les objets célestes sur les orbites en bleu (Lune et Soleil) tournent autour de la Terre. Les objets sur les orbites en orange (Mercure, Vénus, Mars, Jupiter et Saturne) tournent autour du Soleil. À la périphérie se trouvent les étoiles.

Tycho se donnait une discipline d’observation quotidienne ; il a formé toute une génération d’astronomes, leur inculquant l’art de l'observation et a déduit de celles qu'il effectua un système, dit « de Tycho Brahé », élaboré à partir de la théorie géocentrique de Ptolémée (vers 90 - vers 168), de la théorie mixte d'Héraclide du Pont (IVe siècle av. J.-C.), pour qui le Soleil orbite autour de la Terre, tandis que les cinq planètes tournent autour du Soleil, et de la théorie héliocentrique de Copernic. Dans la théorie de Tycho Brahé, le Soleil et la Lune tournent autour de la Terre immobile, tandis que Mars, Mercure, Vénus, Jupiter et Saturne tournent autour du Soleil.

Le système de Copernic (1473 - 1543) est déclaré contraire à la Bible par l’Église en 1616. Le système de Tycho Brahé fut adopté par les Jésuites.

Kepler ne parvint pas à convaincre Tycho d’adopter le modèle héliocentrique du système solaire. Brahé semble ne pas avoir eu d’objection de principe, mais s’y être opposé pour des raisons relatives aux observations. En effet, il considérait que si la Terre orbitait annuellement autour du Soleil, il devrait y avoir une parallaxe stellaire observable sur une période de six mois, au cours de laquelle l’angle d’orientation d’une étoile changerait, ce qui n’était pas perceptible. Cette parallaxe existe, mais est si faible qu’elle n’a pas été détectée avant les années 1830, 240 ans après son modèle, lorsque les instruments furent beaucoup plus précis.

Reprenant les thèses de Brahé lors du procès de Galilée, l’Inquisiteur saint Robert Bellarmin objecta que, si la Terre se mouvait, on devait observer une parallaxe. Mais aucune parallaxe n’ayant été mesurée, ce fait devenait un argument contre l’héliocentrisme. Galilée répondit que les étoiles étaient trop lointaines pour que la parallaxe puisse être vue et mesurée avec les instruments d’alors. Dans les années qui ont suivi, Galilée, par son observation sur les phases de Vénus (en) en 1610, invalida le système ptoléméen. Le système de Brahé devint alors le principal concurrent de celui de Copernic. L’Église catholique finit par abandonner le système géocentrique de Ptolémée, au profit de celui de Tycho Brahé, plus conforme aux observations.

C’est au cours de l’année 1729 que James Bradley réussit à prouver l’automouvement de la Terre par rapport aux étoiles fixes, selon sa démonstration expérimentale de l’aberration stellaire. Bradley obtint un déplacement maximal de l’aberration de l’ordre de 20 secondes d'arc, une valeur très petite qui ne pouvait être constatée par des instruments conçus avant le début du XVIIe siècle. Ces nouvelles observations conduisirent à l'élimination du système de Tycho Brahe. Quant aux parallaxes, elles ne furent observées qu'un siècle plus tard par Friedrich Wilhelm Bessel en 1828.

Malgré son erreur, Tycho se classe dans un mode de pensée basé sur l’observation et l’expérimentation du monde, comme ce sera le cas aussi pour Kepler ou Galilée. Il s’oppose de ce fait à un mode de pensée fondé sur le choix de systèmes seulement théoriques, comme celui d'Aristote, qui influença pourtant la recherche astronomique pendant des siècles ou comme celui de Copernic, qui, à plusieurs égards, resta fermement ancré dans la tradition des Anciens.

Page générée en 0.161 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise