La phase de compression est réalisée par un compresseur d’air axial ou centrifuge. Le travail de compression peut être réduit par pulvérisation d’eau à l’admission. L’air comprimé est réparti en trois flux :
Contrairement au moteur à piston, la combustion d'une turbine a gaz est continue et il faut donc limiter la température à une valeur acceptable pour les matériaux par un large excès d’air 1 300 °C en nominal avec 2 000 °C en courte pointe). Ceci est très pénalisant pour le rendement qui est maximum vers 4 500 °C (le même problème existe pour les moteurs à pistons).
Il existe des machines utilisant une injection de vapeur dans les produits de combustion à l'entrée de la turbine pour augmenter le débit et donc la puissance de celle-ci. La vapeur est produite par une chaudière de récupération chauffée par l’échappement. Il s’agit en fait d’un cycle combiné simplifié. L'injection de vapeur permet également de limiter la teneur en oxydes d'azote (Nox) à l'échappement.
La turbine généralement de type axial comprend un ou plusieurs étages de détente. Contrairement aux turbines à vapeur, il s’agit toujours de turbines à réaction. Deux grands types de turbines à gaz sont à distinguer :
La seconde disposition plus complexe permet un meilleur fonctionnement à charge partielle et variable ce qui est le cas des moteurs destinés à la propulsion ou à l'entraînement de pompes ou de compresseurs (oléoducs ou gazoducs). Les turbines à simple arbre sont adaptées à la production électrique qui se fait à régime constant et charge plus élevée.
La réalisation de la turbine et notamment le premier étage, situé derrière le système de combustion, pose des problèmes métallurgiques liés à la température élevée et aux contraintes dues à la détente et à la force centrifuge s’exerçant sur les aubages mobiles. Elle nécessite l’emploi d’aciers fortement alliés (Cr-Ni-Va) et un refroidissement énergique par de l’air de charge prélevé sur le compresseur. L’utilisation de matériaux céramiques et de monocristaux est à l’étude pour permettre d'augmenter la température.
Bien que théoriquement supérieure au moteur Diesel, la turbine à gaz présente de sévères limitations dues aux contraintes techniques de sa réalisation. Ces principales limites sont les suivantes :
Les avantages inhérents à ce type de machine sont les suivants :
Les applications des turbines à gaz découlent directement de leurs avantages spécifiques. Ainsi, la puissance massique élevée se prête bien à la propulsion aéronautique en particulier sur les avions (turboréacteurs et turbopropulseurs) et les hélicoptères. La propulsion navale fait également de plus en plus appel aux turbines à gaz notamment pour les navires à grande vitesse. Il existe enfin des exemples d’applications à la propulsion ferroviaire ETG et RTG de la SNCF 1972/2004 et à des véhicules militaires comme des chars d’assaut (XM-1 Abrams ou Leclerc).
Par contre, la turbine à gaz est mal adaptée aux véhicules routiers. En effet, les variations de charge et de régime sont trop importantes et trop rapides pour être réalisables avec un rendement correct. De plus, le rendement atteint difficilement 30 % pour des moteurs compacts et de faible puissance alors que les Diesel actuels dépassent 40 %. Par contre, elles pourraient trouver un regain d’intérêt pour les chaines de propulsion hybrides en particulier sur les poids lourds, où l’installation des échangeurs (notamment récupérateur sur échappement) est moins problématique.
L’autre grand domaine d’emploi des turbines à gaz est la production d’électricité. En effet, il s’agit d’applications à vitesse de rotation constante et soit à charge relativement constante pour lesquelles le rendement de ces machines est le meilleur pour les machines utilisées en régime dit "de base", soit au contraire à charge très variable pour les machines utimlisées en secours de réseaux et pour lesquelles la sécurité du réseau est plus importante que le rendement. La puissance varie de quelques centaines de kW à plus de 300 MW. Les machines les plus puissantes sont en général associées à des turbines à vapeur dans des cycles combinés, ce qui fait que le rendement global tend actuellement vers 60 %. En cycle simple, le rendement est de l’ordre de 30 à 35 % voire plus pour les grosses machines. Dans les faibles puissances, le rendement est même inférieur à 30 % mais on met alors à profit l’aptitude des turbines à combustion pour la récupération de chaleur dans des applications de cogénération (production simultanée d’électricité et de chaleur).
Le terme turbocompresseur a deux significations :
Le turbo désigne une turbine actionnée par les gaz d’échappement d’un moteur à pistons et dont le travail sert à comprimer l’air admis dans le moteur. Ce dispositif représente une amélioration importante du moteur classique notamment sur les points suivants :
Le moteur turbocompressé combine donc un moteur à pistons et une turbine à gaz, les deux étant liés par une chambre de combustion commune. Il permet de concilier les avantages des deux types de moteurs tout en réduisant leurs inconvénients respectifs, en particulier pour les cycles Diesel. Ceci explique la généralisation actuelle de cette technique.
Le problème majeur du turbocompresseur est le même que les autres turbines à gaz, à savoir la gestion de la marche à faible charge ou en régime transitoire. Il est en grande partie résolu au XXIe siècle par les turbocompresseurs dits « à géométrie variable » munis d’aubages fixes à Incidence variable.
C'est grâce à leur puissance massique et puissance volumique élevées que de petites turbines sont utilisées pour motoriser les hélicoptères. Des trains (Turbotrain) RTG et ETG, mais aussi des chars d'assaut, des navires... sont propulsés par des turbines à gaz de puissance moyenne. Les turboréacteurs et les turbopropulseurs sont des turbines à gaz utilisées en aéronautique pour propulser des aéronefs modernes et rapides.
L'industrie pétrolière utilise des turbines à gaz pour entraîner des pompes et compresseurs pour les pipelines.
La turbine à gaz de grande puissance (> 1 MW) est surtout utilisée pour entraîner un alternateur et produire de l'électricité. Les infrastructures et le génie civil nécessaires pour une centrale électrique équipée de turbines à gaz sont réduits, ce qui permet d'installer en quelques mois une centrale tout près du lieu d'utilisation de l'électricité (ville, usine) ou de la source de combustible (port, forage, raffinerie...). Turbine et alternateur sont acheminés sous formes de modules compacts et complets qu'il suffit d'assembler et de raccorder aux réseaux dans des climats où la température extérieure peut aller de -40 à +50 °C. Un des avantages des centrales à turbine à gaz est le temps réduit pour la mise en œuvre, le gestionnaire d'un réseau de distribution électrique peut ainsi moduler facilement la capacité de production pour s'adapter aux variations de la consommation.
L'installation d'un groupe électrogène à turbine à gaz peut s'accompagner d'une installation en cogénération, afin de récupérer les quantités importantes d'énergie (environ 65 % de l'énergie consommée) contenues dans les gaz d'échappement. La principale application de ce type consiste à injecter ces gaz, éventuellement après passage dans un tunnel de post-combustion, dans une chaudière de récupération, avec production d'eau chaude ou de vapeur.
La turbine à gaz contribue dans une large mesure aux motorisations actuelles. Leur avantage de légèreté en impose l’usage dans l’aéronautique, tandis que dans le domaine des fortes puissances (production d’électricité) elles se démarquent par leur adaptation à des cycles combinés ou de cogénération très performants. Les moteurs à explosion eux ont leur puissance limitée à environ 10 MW pour des raisons de masse et d’encombrement.