Traînée de condensation - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Mécanisme de formation

Les deux façons de former les traînées. En haut, celles prenant naissant au bout les ailes et en bas, celles provenant des réacteurs
Exemple de condensation sur l'aile et de « trainée » se condensant en bout d'aile
Cette forteresse volante B-17 (Seconde guerre mondiale) génère deux types de trainées, l'une discrète, en bout d'aile droite, l'autre en sortie de moteur, avec une forme hélicoïdale

Ces trainées ne se forment qu'à certaines conditions, qui ne se rencontrent pratiquement que dans la haute troposphère et un peu plus souvent en hiver :

  • où l'air est à environ -40 °C
  • où l'air est assez humide pour atteindre la saturation et former des cristaux de glace, spontanément ou si un élément supplémentaire déclenche le processus.
  • où l'air contient des noyaux de congélation, capables de nucléer la vapeur d'eau qui forme alors des gouttelettes surfondues de condensation. Ces dernières peuvent persister jusqu'à -40 °C avant de se congeler sans l’intervention d’une particule d'aérosol servant de noyau glaciogène. Bien que l'atmosphère contiennent de tels noyaux, ils sont en faibles concentration à haute altitude. Ce sont donc surtout les gaz éjectés par les moteurs et les particules qu'ils contiennent qui fournissent de tels éléments précipitant la formation des cristaux et l'apparition de la traînée.

Les principes de formation des traînées de condensation sont donc similaires à ceux des nuages et sont expliqués en détail par la physique des nuages.

Types

Il existe trois sources pouvant induire la formation de traînées visibles sur un avion : le moteur à hélice, la turbine de moteur à réaction et (plus discrètement) certains éléments de portance.

Traînées d'ailes

Quelques éléments de portance (ailerons ou extrémité d'aile) produisent un vortex tubulaire associé à une dépression sur le dessus de l’aile (ce qui permet à l'avion de voler). La chute de pression est la plus brusque en bout d'aile où elle entraîne une chute instantanée de température (comme le fait la décompression du fluide compressé par le moteur d'un réfrigérateur, mais d'une manière bien plus brutale). Si l'avion vole dans une zone où l'humidité relative de l'air approche les 100 %, la baisse de température peut faire passer l’air au-delà de la saturation au bout des ailes.

Le tourbillon qu'on y retrouve concentre et piège cet air sursaturé en une sorte de tube qui rend brièvement visible cette condensation car les gouttelettes d'eau ont eu le temps d'y geler. Ces traînées sont rares et brèves car les cristaux de glaces sont rapidement sublimés en vapeur d'eau et l’humidité relative retombe sous 100 %. En effet, au contraire de ce qui se passe en sortie de réacteur ou de moteur, le taux de noyaux de congélation est très faible en bout d'aile car il ne dépend que de ceux de la masse d'air.

Traînées de moteur à hélice

En sortie de moteur à hélice, les gaz chauds et très humides, sont soumis à des phénomènes d'expansion/décompression quand ils sont pris dans le vortex de l'hélice et propulsés en arrière de l'avion. Si l'air est très humide et assez froid, ces gaz génèrent une traînée blanche, qui peut même prendre un aspect hélicoïdal. Cette trainée de condensation apparait quand la quantité d'humidité que peut contenir l'air est inférieure à celle ajoutée par les gaz d'échappement. Dès que l'air est en phase saturée, la vapeur se condense en micro-gouttelettes et éventuellement en cristaux de glace qui deviennent visibles. Selon les conditions de température et l'heure (jour nuit), ces traînées se dissipent en quelques dizaines de secondes, minutes ou dizaine de minutes ou contribuent à former ou alimenter des nuages. De tels phénomène étaient observés lors de certains combats aériens lors de la seconde guerre mondiale.

Traînées de moteur à réaction

En sortie de réacteur, les gaz d’échappement sont très chauds, très humides et riches en micro et nanoparticules. En sortie de réacteur, ils subissent une brutale expansion/décompression qui les refroidit brutalement. Chaque litre de carburant consommé produit environ un litre d'eau, qui va rapidement s'expanser en panache en vapeur, brutalement mise en contact avec l'air froid d'altitude.

Comme la quantité d'humidité que peut contenir l'air à ces altitudes est bien inférieure en général à celle venant du réacteur, l'air passe en phase saturée et la vapeur se condense alors en gouttelettes puis en cristaux de glace. Selon les conditions de température et l'heure (jour nuit), ces traînées peuvent se dissiper après seulement quelques dizaines de secondes ou minutes ou perdurer jusqu’à plusieurs heures puis former des cirrus qui persisteront éventuellement des dizaines d'heures.

Autres facteurs

Comme pour la formation des cirrus « normaux », d'autres facteurs (encore mal étudiés), pourraient aussi contribuer à la formation de traînées de condensation ou interagir avec elles ;

Rayonnement solaire ou cosmique

Aux altitudes où se forment les cirrus, deux types de rayonnements peuvent interférer avec la formation des nuages ; les rayons reçus du soleil, et le rayonnement cosmique, assez énergétique pour être très ionisants, mais généralement en grande partie détourné de la terre, par la magnétosphère et le vent solaire. À haute altitude, ces deux types de rayonnement (envoyés par le soleil ou le fonds cosmique) sont moins filtré par l'atsmosphère (plus ténue) et par la couche d'ozone (pour les UV). Le flux de rayonnement reçu par la vapeur d'eau est à cette altitude bien plus important qu'au sol (notamment dans l'UV et l'infrarouge solaire direct).

Une partie de ce rayonnement peut ioniser l'air (ce sont aussi elles qui créent les aurores boréales), voire craquer des molécules d'eau, le dioxygène, le méthan, etc. Charles Thomson Rees Wilson, en étudiant la formation des nuages, a montré au siècle dernier dans la première chambre à brouillard, que ce type de rayonnement pouvait catalyser la condensation d'un gaz saturé en vapeur en microgouttelettes. Dans le cas des cirrus, une partie des gouttelettes gèle instantanément en cristaux de glace, pouvant à leur tour devenir des noyaux de nucléation de gouttelettes plus grosses finissant par former des cristaux plus gros et visibles.

Comme le montrent une simple observation du ciel, mais aussi les images satellitales et les travaux de l'université de Leeds, sous les corridors aériens ou sous leur vent (d'altitude), certains jours, plus de 80 %, voire 100 % de la nébulosité du ciel est artificielle, dérivant de l'étalement des cirrus initiés par les trainées de condensation ou réalimentés par ces derniers.

Aérosols particulaires minéraux d'altitude

Les aérosols volcaniques fins (PM) issus des grandes éruptions volcaniques pourraient également interagir avec les cirrus et on supposer avec les traînées. De même pour certaines particules soulevées par les tempêtes (certaines tempête de sable exceptionnelles par exemple).

Page générée en 0.215 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise