Tornade - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Modélisation

Le phénomène est aussi vieux que le monde, mais le mot « tornade » n’entre en français qu’en 1842 depuis l’anglais. Il provient en fait de l’espagnol où il apparaît en 1663 (selon le Petit Robert). Comme ce phénomène météorologique est peu connu en Europe mais est prévalent autour du Texas et de la Floride, il y a fort à parier que l’expression vient des colonies américaines de l’Espagne.

John Winthrop père

Cependant, même lorsque le mot n’est pas encore inventé, des descriptions de ce phénomène existe. Un fidèle adepte de la prise de données météorologiques, le gouverneur britannique John Winthrop (père) , écrit dans ses notes de juillet 1643, qu’un soudain coup de vent dans le nord-est du Massachusetts et sur la côte du New Hampshire déracina des arbres, remplit l’air de poussières, souleva un édifice public de Newbury et tua un amérindien. Même si cette description pourrait être reliée à une rafale descendante ou à une ligne de grain, elle pourrait bien être le premier signalement dans l’histoire d’une tornade.

Plusieurs autres rapports de vents tourbillonnant causant des dommages sont inscrits dans les annales de la Nouvelle-Angleterre jusqu’à ce que le mot « tornade » soit pour la première fois utilisé par le révérend Joseph Emerson à Groton, Massachusetts en 1748 : une terrible tornade avec du tonnerre assourdissant.

La population se perd en conjecture à propos de ces « terribles tourbillons ». En juillet 1759, à la suite d’une terrible tornade passant à Leicester, Massachusetts, un descendant du gouverneur Winthrop (John Winthrop (astronome)) écrit :

« Il me semble difficile de trouver une cause adéquate pour ce phénomène, de démontrer comment un petit volume d’air peut être mis en rotation si rapide. Je n’oserais pas m’aventurer à émettre une hypothèse. »

Le 14 août 1773, le professeur Samuel Williams est le premier en Amérique à donner non seulement une description mais des données objectives de vents. Il écrit qu’une trombe marine s’est formée sur le fleuve côtier Merrimack, au sud de Salisbury (Massachusetts), et se transforma en tornade en touchant terre. Juste avant son apparition, de violentes rafales de vents venant du sud-ouest soufflèrent sur la région durant 4 minutes avant un changement rapide à l’ouest-nord-ouest. Deux minutes plus tard, le vent devenait calme et le ciel devint très sombre.

Les recherches en météorologie devinrent plus systématiques à partir du XIXe siècle ainsi que les travaux sur l’explication des tornades. Dans les années 1880, le Corps des ingénieurs de l’armée américaine, qui était en charge du service météorologique naissant de ce pays, organisa une équipe de 2 000 volontaires pour documenter tous les cas de tornades sur le centre et l’est des États-Unis. On en tira les patrons météorologiques de surface favorables à la génération des orages tornadiques et le Corps essaya de faire les premières prédictions. Ce ne fut pas très concluant et le National Weather Service, qui succéda au Corps, décida de ne pas mentionner jusqu’en 1938 la possibilité de ce phénomène dans ses alertes météo d’orages violents.

Avec la naissance de l’aviation, la recherche des conditions nécessaires à la formation de tornade fut remise à l’ordre du jour dans les années 1920 et 1930. Le développement du radiosondage commença à donner plus d’informations sur la structure verticale de l’atmosphère ce qui permit de reconnaître les facteurs thermodynamiques et les déclencheurs synoptiques d’altitude nécessaires au déclenchement des nuages convectifs.

Robert C. Miller

Toutes les informations ainsi réunies ont été colligées et interprétées par des chercheurs comme A. K. Showalter et J. R. Fulks aux États-Unis. Utilisant ces travaux et leurs propres observations, les officiers météo E. J. Fawbush et R. C. Miller, de la base aérienne Tinker (Tinker Air Force Base) de la US Air Force à Oklahoma City, ont pu prédire pour la première fois avec succès l’occurrence d’une tornade sur la base le 25 mars 1948 en soirée. Ce succès fit boule de neige, Fawbush et Miller reçurent rapidement le mandat de prédire la possibilité de tornades dans tout le centre des États-Unis pour la US Air Force. Ils furent mis en charge trois ans plus tard d’un centre de prévision du temps violent, le Severe Weather Warning Center (SWWC), pour toutes les bases du continent.

Ces résultats se répandant dans la population, le gouvernement créa en mars 1952 un organisme expérimental inter-armes et civil (le Weather Bureau-Army-Navy ou WBAN) pour la prévision des orages violents à la population en général. Le 17, les prévisionnistes de ce centre émirent leur premier bulletin de prévision mentionnant la possibilité de tornade et le 22 mai, le WABN devint officiel sous le nom de Weather Bureau Severe Weather Unit (SWU). Ce centre changera quelques fois de nom pour être maintenant connu comme le Storm Prediction Center.

Durant les années 1950 et 1960, l’analyse des éléments était totalement faite à la main et les nouveaux éléments venant des recherches sur les tornades étaient intégrés de la même façon. Durant les années 1970, les ordinateurs ont commencé à faire leur apparition et des campagnes comme le Tornado Intercept Project ont permis de recueillir des informations in situ sur les tornades grâce à la participation des chasseurs de tornades et de scientifiques.

L'année 1978 marque un progrès important dans la compréhension des mouvements de rotations dans les orages à tornades : Robert Wilhelmson, de l'Université de l'Illinois, et Joseph Klemp, du Centre américain de recherches atmosphériques, ont obtenu dans leurs simulations informatiques des supercellules réalistes qui présentaient des zones de précipitations en forme de crochet. À des temps successifs, en tout point d'un réseau tridimensionnel représentant l'espace, leur programme calculait les variations de température, de vitesse du vent et de changement d'état de l'eau entre ses diverses formes (vapeur, gouttelettes d'un nuage et gouttes de pluie).

Dans ce monde numérique, des supercellules se forment dans un état initial homogène, ce qui réfute l'idée largement répandue selon laquelle les tornades violentes résulteraient de collisions entre masses d'air différentes. En omettant dans les équations la rotation de la Terre, R. Wilhelmson et J. Klemp ont montré que celle-ci n'avait qu'un faible effet dans les premières heures d'existence de l'orage. C'est plutôt la rotation du vent selon un axe vertical qui détermine le sens d'un tourbillon.

Keith Browning avait proposé en 1963 que la variation du vent avec l'altitude dans l'environnement habituel des supercellules engendrait une rotation horizontale, comme démontré antérieurement, et que le courant ascendant changeait l'axe de rotation vers le haut. Dans les années 1980, les simulations confirmaient ce point en montrant comment la colonne ascendante tournait graduellement d'axe pour être verticale à mi-hauteur du nuage, mais cela n'expliquait pas comment elle pouvait se mettre à tourbillonner verticalement très près du sol.

En 1985, les simulations de J. Klemp et de Richard Rotunno ont montré que la rotation à basse altitude dépend du courant descendant de la supercellule, qui contient de l'air refroidi par l'évaporation: quand cette évaporation n'a pas lieu, aucune rotation n'apparaît près du sol. Les simulations ont montré, à la surprise générale, que la rotation de basse altitude est amorcée au nord du mésocyclone, dans la masse d'air légèrement refroidie par la pluie. Alors qu'à mi-hauteur, le courant descendant s'enroule, dans le sens cyclonique, autour de la colonne ascendante, une partie de l'air froid se dirige vers le sud, avec, à sa gauche, l'air chaud pénétrant dans la supercellule et, à sa droite, de l'air encore plus froid.

L'air chaud du courant ascendant soulève le flanc gauche du courant descendant, alors que l'air froid de droite le bascule vers le sol. Ainsi commence un mouvement hélicoïdal de l'air froid autour de son axe de déplacement horizontal (par cisaillement latéral des vents). Comme cet air froid descend en même temps, son axe de rotation est dévié vers le bas comme le courant ascendant l'est vers le haut, ce qui donne une rotation anticyclonique. En 1993, la démonstration fut faite que la rotation de ce courant d'air descendant s'inverse avant qu'il n'atteigne la surface. Une circulation d'air cyclonique peut donc apparaître près du sol. Cet air froid rasant est aspiré dans la partie sud-ouest de la colonne ascendante. À mesure que l'air converge vers cette colonne, la rotation s'accélère de même qu'une patineuse tourne plus vite quand elle ramène les bras le long du corps.

Nous cernons maintenant mieux comment naissent les vents tournants dans le mésocyclone, à moyenne altitude et près du sol mais il nous restait à montrer pourquoi les tornades, qui ont un diamètre beaucoup plus petit, se forment. L'explication la plus simple est qu'elles résultent des frottements sur le sol. Cette explication semble paradoxale, puisque les frottements ralentissent généralement les vents. Toutefois un tel effet est connu dans une tasse de thé que l'on remue. Dans le liquide en rotation, un équilibre s'instaure entre la force centrifuge et la force de pression due à la dépression créée au centre. Au fond de la tasse, le frottement réduit les vitesses, et donc la force centrifuge. Au fond de la tasse, le liquide se déplace alors vers le centre, comme en attestent les feuilles de thé qui se rassemblent sur le fond et au centre de la tasse. Cependant, en raison de cette convergence et de «l'effet patineuse», la rotation du liquide s'accélère : un tourbillon apparaît le long de l'axe de la tasse. Stephen Lewellen, de l'Université de Virginie, en déduit que, dans une tornade, les vents les plus rapides soufflent dans les 300 premiers mètres au-dessus du sol.

Avec les frottements, on explique également la longévité des tourbillons. Une tornade crée un vide partiel en son cœur, car les forces centrifuges empêchent l'air d'y pénétrer. En 1969, l'Australien Bruce Morton a expliqué comment le vide se maintient : des forces d'Archimède intenses empêchent l'air de pénétrer par le haut. Près du sol, le frottement réduit la vitesse tangentielle de l'air, de même que les forces centrifuges, ce qui autorise l'arrivée d'un courant d'air dans le cœur. Cependant le frottement limite également cette alimentation et ne laisse pas passer assez d'air pour remplir le cœur. De cette manière, les tornades s'intensifient et se stabilisent, surtout lorsqu'elles entrent en contact franc avec le sol : l'alimentation se réduit à une mince couche d'air.

La théorie des frottements n'explique toutefois pas pourquoi le tourbillon qui constitue la signature des tornades apparaît en altitude, dans les nuages, et précède parfois de 10 à 20 minutes le contact d'une tornade avec le sol.

Page générée en 0.036 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise