Thermodynamique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Grandeurs extensives et intensives

Parmi les grandeurs physiques qui déterminent l'état thermodynamique d'un système, on distingue les grandeurs extensives et intensives.

Un système peut toujours être divisé - par la pensée - en parties qui occupent des régions disjointes de l'espace.

Une grandeur est extensive lorsque sa valeur pour le système entier est la somme de ses valeurs pour chacune de ses parties. Exemples :

Une grandeur est intensive lorsque dans un système homogène sa valeur est la même pour le système entier et pour chacune de ses parties. Exemples :

Une grandeur peut n'être ni extensive ni intensive, le carré du volume par exemple. On définit ce genre de grandeur pour trouver des relations entre celle-ci qui auront des propriétés différentes selon qu'une grandeur soit extensive ou intensive d'où l'intérêt de les distinguer.

Les variables d'état sont des grandeurs (indépendantes) qui servent à définir le système et dont il suffit de fixer la valeur pour reconstituer un système exactement identique. Les grandeurs intensives sont indépendantes de la quantité de matière : pression, température, viscosité, etc. Les grandeurs extensives sont proportionnelles à la quantité de matière : volume, énergie interne, enthalpie, etc.

Principes

Les deux principes les plus importants sont le premier et le second. On leur en ajoute parfois deux autres (principes zéro et troisième).

  • Le principe zéro de la thermodynamique concerne la notion d'équilibre thermique et est à la base de la thermométrie. Si deux systèmes sont en équilibre thermique avec un troisième, alors ils sont aussi ensemble en équilibre thermique.
  • Le premier principe de la thermodynamique ou principe de conservation de l'énergie affirme que l'énergie est toujours conservée. Autrement dit, l’énergie totale d’un système isolé reste constante. Les événements qui s’y produisent ne se traduisent que par des transformations de certaines formes d’énergie en d’autres formes d’énergie. L’énergie ne peut donc pas être produite ex nihilo ; elle est en quantité invariable dans la nature. Elle ne peut que se transmettre d’un système à un autre. On ne crée pas l’énergie, on la transforme.
    Ce principe est aussi une loi générale pour toutes les théories physiques (mécanique, électromagnétisme, physique nucléaire,...) On ne lui a jamais trouvé la moindre exception, bien qu'il y ait parfois eu des doutes, notamment à propos des désintégrations radioactives. On sait depuis le théorème de Noether que la conservation de l'énergie est étroitement reliée à une uniformité de structure de l'espace-temps.
    Elle rejoint un principe promu par Lavoisier : « Rien ne se perd, rien ne se crée, tout se transforme ».
  • Le deuxième principe de la thermodynamique ou principe d'évolution des systèmes affirme la dégradation de l'énergie : l'énergie d'un système passe nécessairement et spontanément de formes concentrées et potentielles à des formes diffuses et cinétiques (frottement, chaleur, etc.). Il introduit ainsi la notion d'irréversibilité d'une transformation et la notion d'entropie. Il affirme que l'entropie d'un système isolé augmente, ou reste constante.
    Ce principe est souvent interprété comme une "mesure du désordre" et à l'impossibilité du passage du "désordre" à l'"ordre" sans intervention extérieure. Cette interprétation est fondée sur la théorie de l'information de Claude Shannon et la mesure de cette "information" ou entropie de Shannon.
    Ce principe a une origine statistique : à la différence du premier principe, les lois microscopiques qui gouvernent la matière ne le contiennent qu'implicitement et de manière statistique. En revanche, il est assez indépendant des caractéristiques mêmes de ces lois, car il apparaît également si l'on suppose des lois simplistes à petite échelle.
  • Le troisième principe de la thermodynamique est plus controversé. Il est associé à la descente vers son état quantique fondamental d'un système dont la température s'approche d'une limite qui définit la notion de zéro absolu. Il n'est pas nécessaire en thermodynamique classique.
Page générée en 0.055 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise