Théorie des jeux - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Grandes lignes

La théorie des jeux étudie les comportements - prévus, réels, ou tels que justifiés a posteriori - d’individus face à des situations d’antagonisme, et cherche à mettre en évidence des stratégies optimales. Des situations apparemment très différentes peuvent parfois être représentées avec des structures d’incitation comparables, et constituant autant d’exemples d’un même jeu.

La théorie des jeux non coopératifs s’applique à des situations où des joueurs jouent sciemment alors qu’ils ont des buts au moins partiellement antagonistes (elle ne s’applique donc pas aux situations de pleine coopération, mais à la compétition ou à sa variante plus fréquente que l’on nomme la coopétition). Elle ne concerne pas les situations de jeu contre une nature dépourvue de buts, ne dressant pas de plans, situations où il y aurait donc en fait qu’un seul joueur.

Résolution d’un jeu à somme nulle

1\2 (A) (B) (C)
(a) 30 -10 20
(b) 10 20 -20

Les deux joueurs décident simultanément de leur stratégie.

Raisonnements intuitifs

Le joueur (1) a le choix entre (a) et (b). Il peut se dire : « La stratégie (b) peut me faire perdre 20, et au plus gagner 20. En revanche, avec la stratégie (a) je peux gagner jusqu’à 30, et au pire perdre 10. » Ce type de réflexion correspond aux stratégies « Maxi-Max » (maximiser le gain possible sans considération pour les pertes possibles) et « Maxi-Min » (maximiser le pire résultat possible), qui en l’occurrence donne le même choix : l’option a.

De même, le joueur (2), touchant l’opposé des valeurs du tableau, qui réfléchirait de même verrait que Maxi-Min élimine (A) à cause de la perte maximum de 30, mais ne permet pas de trancher entre (B) et (C), où la perte maximum est de 20. Et que Maxi-Max classe les trois options par ordre croissant : A (meilleur résultat possible : -10) B (+10), C (+20). Cela le pousserait à choisir (C).

Le résultat serait alors a-C : le joueur (2) perd 20 au profit de (1).

Mais le joueur (2) peut aussi essayer d’anticiper le choix de (1). Il voit ainsi que si (1) joue le maximin, lui-même a intérêt à choisir (B), ce qui lui permet de gagner 10.

Et si à son tour le joueur 1 anticipe cette déviation et préfère faire (b) pour alors toucher 20 ? Alors (2) devrait à nouveau choisir (C) : nous voilà revenu au point de départ !

La notion de stratégie et d’équilibre mixte

Aucune réponse ne s’impose. Comment s’en sortir ?

Une première réponse possible est de jouer au hasard, avec une probabilité égale pour tous les coups possibles, sans se préoccuper des gains. Cela n’apparaît pas optimum, il y a certainement mieux à faire.

Une seconde stratégie est de tenter d’attribuer a priori une probabilité aux actions de l’adversaire, et d’opter pour la meilleure réponse adaptée. Ainsi, si (2) attribue une probabilité 50/50 aux options de (1), il doit jouer aussi à 50/50 (B) et (C). Mais l’adversaire n’est pas un dé qui se comporte au hasard : lui aussi va anticiper. Si c’est (1) qui réfléchit, il voit bien qu’il est absurde de supposer que (2) va jouer (A) dans un tiers des cas. Là encore il y a certainement mieux à faire.

Introduction de probabilités

John von Neumann est parvenu à sortir de cet imbroglio à l’aide des probabilités. Au lieu de décider fermement d’une action, chaque joueur va agir de façon probabiliste, chaque coup étant choisi par hasard avec un processus aléatoire (par exemple un jeu de dès, ou une table de valeurs aléatoires). Il est clair que l’adversaire ne peut pas deviner notre comportement si nous ne le connaissons pas d’avance nous-mêmes !

La solution que von Neumann fournit au problème constitue le théorème du minimax.

Point-selle

Il est remarquable que ce choix stratégique reste le meilleur même si l’adversaire en a connaissance.

On est ainsi amené à introduire le concept intéressant, dans les stratégies mixtes, de point-selle : il s’agit du choix de probabilité optimal pour les deux joueurs : celui qui s’en écarte se pénalise du même coup (même si cette stratégie lui est défavorable, car les autres le seront encore plus). Le thème avait été entrevu par Auguste Detoeuf : Si vous n’avez qu’un risque sur mille d’être convaincu de mensonge, ne mentez pas plus d’une fois sur mille, car cette fois-là annulera à elle seule toutes les autres où vous avez dit la vérité. Detoeuf, industriel responsable, évite sciemment de préciser qu’il y aura parfois même avantage à mentir effectivement une fois sur mille plutôt que dire toujours la vérité.

Les stratégies mixtes sont empiriquement bien connues des diplomates et des joueurs de poker, qui savent les bénéfices potentiels obtenus en cachant leurs plans, même quand il y en a un qui semble évident. Cette idée frappera Philip K. Dick qui lui consacrera son roman Loterie solaire.

Page générée en 0.048 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise