Les premiers résultats d'indépendance notables en théorie des ensembles sont ceux de Kurt Gödel qui démontre que l'axiome du choix est compatible avec la théorie ZF, autrement dit si la théorie ZFC est contradictoire, alors la théorie ZF est contradictoire. Il montre également le même résultat pour l'hypothèse du continu vis à vis de ZF ou ZFC. Gödel utilise la méthode appelée depuis la méthode des modèles intérieurs, elle revient à construire, par exemple dans un modèle de ZF ne satisfaisant pas nécessairement l'axiome du choix, une sous-classe de celui-ci qui possède une nouvelle relation d'appartenance satisfaisant l'axiome du choix. Une contradiction de la théorie ZFC entraîne donc une contradiction de la théorie ZF.
Paul Cohen, en 1963, démontre que la négation de l'hypothèse du continu (HC) est compatible avec la théorie ZFC : si la théorie ZFC + (non HC) est contradictoire, alors la théorie ZFC est contradictoire. La méthode qu'il introduit, le forcing, devait avoir un énorme succès en théorie des ensembles. Reformulée, étendue, itérée ... elle a permis de montrer de nombreux résultats d'indépendance.
Les résultats d'indépendance précédents reposent sur des résultats d’équicohérence (ou équiconsistance, par exemple la cohérence de la théorie ZF entraîne la cohérence de ZF+AC (la réciproque est évidente). Mais pour d'autres axiomes, comme les axiomes de grands cardinaux, ce n'est pas le cas : dans la théorie ZFC + « il existe un cardinal inaccessible » on peut montrer l'existence d'un modèle de ZFC, c'est-à-dire la cohérence de cette théorie. Le second théorème d'incomplétude de Gödel permet d'en déduire que l'existence d'un cardinal inaccessible n'est pas démontrable dans ZFC (en supposant bien-sûr que cette dernière théorie est cohérente). Le second théorème d'incomplétude permet donc également de démontrer des résultats d'indépendance. Il est utilisé plus largement pour comparer des théories, une théorie étant « plus forte » qu'une autre si elle permet de démontrer sa cohérence.