Théorie de Galois - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Applications

Théorie algébrique des nombres

La théorie algébrique des nombres est l'étude des nombres racines d'un polynôme à coefficients entiers, appelés nombres algébriques.

La théorie de Galois est ici essentielle car elle offre la structure la plus adéquate d'analyse, à savoir l'extension finie la plus petite contenant les nombres étudiés. Un sous-ensemble joue un rôle particulier : celui des entiers algébriques, ils correspondent à la généralisation des entiers dans l'extension. L'étude de cet ensemble ajoute à la théorie de Galois de nombreuses propriétés issues de la théorie des anneaux. Les entiers algébriques jouent un rôle important pour la résolution d'équations d'arithmétique modulaire ou diophantiennes.

On peut citer comme application de la théorie de Galois à ce domaine, le théorème de Gauss-Wantzel qui détermine tous les polygones réguliers constructibles à la règle et au compas. La Théorie de Kummer s'applique aux équations diophantiennes et permet de valider le grand théorème de Fermat pour presque tous les entiers inférieurs à cent. Enfin, dans le cadre de l'arithmétique modulaire, la loi de réciprocité d'Artin généralise la loi de réciprocité quadratique de Gauss et résout le neuvième problème de Hilbert.

Cryptographie

La machine Lorenz utilisée par les Allemands durant la Seconde Guerre mondiale

La cryptographie est la discipline qui s'attache à protéger un message. Le cadre théorique maintenant le plus utilisé consiste à définir un algorithme qui, associé à une clef permet de créer un nouveau message dit cryptogramme signifiant qu'il est chiffré. Le message chiffré est simple à déchiffrer, c'est-à-dire simple à transformer en message d'origine avec une clef et difficile sans celle-ci pour la personne qui s'efforce alors de le décrypter.

Dans une partie des théories modernes de cryptographie, les lettres du message sont choisies dans un corps fini. Le cadre est donc celui de la théorie de Galois.

Il est naturel que les outils associés soient ceux de la théorie. L'arithmétique modulaire (cf par exemple l'algorithme RSA) est très largement employée. Si les techniques simples reposent sur des résultats élémentaires comme le théorème de Bézout, le théorème des restes chinois ou l'exponentiation modulaire, les développements actuels utilisent des outils plus subtils comme les courbes elliptiques (cf une clé privée inviolable ?).

Théorie des équations algébriques

La problématique de la théorie des équations algébriques est celle qui donna naissance à la théorie de Galois. Elle complète le théorème d'Abel-Ruffini en proposant une condition nécessaire et suffisante pour l'existence d'une expression par radicaux des racines d'un polynôme.

Elle permet néanmoins d'aller plus loin. Le théorème de Kronecker-Weber explicite précisément la structure des extensions rationnelles associées aux polynômes ayant des racines s'exprimant par radicaux. Il devient alors possible de résoudre explicitement toutes les équations de cette nature.

Elle possède pour champs d'application tous les corps, offrant un outil puissant à l'arithmétique modulaire. Beaucoup de lois de réciprocité, de même nature que celle démontrée par Gauss dans le cas quadratique sont ainsi démontrables grâce à la théorie de Galois.

Abel puis Hermite ont travaillé sur une autre approche : les fonctions elliptiques. Elles permettent, par exemple, d'exprimer les racines de toute équation polynomiale. La théorie géométrique de Galois intégre cette notion à travers les courbes elliptiques. Le grand théorème de Fermat a été démontré à l'aide de méthodes de cette nature.

Il existe une théorie de Galois un peu particulière traitant des équations différentielles polynomiales. Cette théorie prend le nom de théorie de Galois différentielle. Elle étudie une famille particulière de corps appelée extension différentielle. Ces corps possèdent des groupes de Galois. La résolution d'une équation algébrique correspond aussi à l'analyse du groupe associé et permet la résolution d'une équation différentielle.

Géométrie algébrique

Page générée en 0.090 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise