Théorème de Stokes - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Sens physique de la formule de Stokes

Notons \mathrm d\vec S le champ de vecteurs normal sortant d'un domaine U relativement compact à bord régulier. Soit X un champ de vecteurs défini au voisinage de l'adhérence de D. On définit la forme surfacique sur \partial U par :

\eta=\iota(N)(\mathrm dx\wedge \mathrm dy\wedge \mathrm dz)\big|_{\partial U}

On définit le flux de X par :

\oint_{\partial U} \vec X\ \mathrm d\vec S=\int_{\partial U}\langle X\mid N\rangle\cdot \eta

La formule d'Ostrogradsky se réécrit alors :

\oint_{\partial U} \vec X\ \mathrm d\vec S=\int_U (\mathrm{div} X) \, \mathrm dx\,\mathrm dy\,\mathrm dz

Soit \partial S , une courbe fermée orientée dans \R^3 , S une surface orientée dont le contour est \partial S . L'orientation de \partial S est induite par l'orientation de S. Si le champ vectoriel \vec{V} admet des dérivées partielles continues, alors :

\oint_{\partial S}\vec V \cdot \mathrm d\vec l = \iint_{S}\overrightarrow{\mathrm{rot}} \ \vec V \cdot \mathrm d\vec S

\mathrm d\vec l est le vecteur directeur de la courbe en tout point, \overrightarrow\mathrm{rot}\ \vec V= \vec\nabla \wedge \vec V le rotationnel de \vec V , et \mathrm d \vec S le vecteur normal à un élément de surface infinitésimal dont la norme est égale à la surface de l'élément.

Son application directe est le théorème d'Ampère (on l'applique au champ magnétique).

Formule d'Ostrogradsky

Soit U un domaine compact à bord lisse de \R^3 , et posons \eta=\mathrm dx\wedge \mathrm dy\wedge \mathrm dz . Si X est un champ de vecteurs au voisinage de l'adhérence de U, alors sa divergence vérifie :

\mathrm d\left[\iota_X\omega\right]=\mathrm{div}(X)\cdot\omega

La formule de Stokes donne alors :

\int_{\partial U}\! \left[f\cdot \mathrm dy\wedge \mathrm dz+g\cdot \mathrm dz\wedge \mathrm dx+h\cdot \mathrm dx\wedge \mathrm dy\right]=\iiint_U\! \left[\frac{\partial f}{\partial x}+\frac{\partial g}{\partial y}+\frac{\partial h}{\partial z}\right]\, \mathrm dx\,\mathrm dy\,\mathrm dz

Application à l'homologie

La formule de Stokes est utilisée pour démontrer le théorème de dualité de De Rham.

La formule de Stokes permet aussi de démontrer le lemme de Poincaré. Ce dernier s'avère d'une grande utilité pour comprendre les isotopies en homologie. Il est aussi utilisé notablement dans la preuve du théorème de Darboux en géométrie symplectique.

Page générée en 0.086 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise