Théorème de Hahn-Banach - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En mathématiques, et plus particulièrement en analyse et en géométrie, le théorème de Hahn-Banach, dû aux deux mathématiciens Hans Hahn et Stefan Banach, garantit l'existence d'une forme linéaire vérifiant certaines conditions (valeurs imposées sur une partie de l'espace, mais limitées partout).

En permettant de prouver abstraitement l'existence de nombreuses fonctions continues, c'est un outil fondamental de l'analyse fonctionnelle.

Par son interprétation géométrique en termes d'hyperplans évitant un convexe fixé, il joue également un rôle primordial dans l'étude de la géométrie des convexes, et au-delà en analyse convexe.

Forme analytique et forme géométrique

Les énoncés dénommés « théorème de Hahn-Banach » dans la littérature scientifique sont nombreux, différant les uns des autres parfois par de simples détails et parfois de façon significative. Ils se divisent néanmoins nettement en deux classes : certains garantissent de pouvoir prolonger une forme linéaire, sous certaines exigences de majoration (les formes « analytiques » du théorème) ; d'autres assurent qu'on peut séparer deux ensembles convexes par un hyperplan affine (les formes « géométriques » du théorème).

Donnons pour commencer un exemple d'énoncé pour chacune de ces deux catégories.

Un énoncé de la forme analytique du théorème

Théorème — Soit V un espace vectoriel sur \R et p une fonction convexe définie sur V et qui ne prend que des valeurs finies.

Soit G un sous-espace vectoriel de V, et f une forme linéaire sur G qui y vérifie en tout point la condition de majoration : f(x)\leq p(x).

Il existe alors un prolongement de f en une forme linéaire sur l'espace V tout entier, vérifiant encore la condition : f(x)\leq p(x) en tout point de V.

Un énoncé de la forme géométrique du théorème

Théorème — Soit E un espace vectoriel topologique et C un convexe ouvert non vide de E.

Soit L un sous-espace affine de E qui vérifie la condition : L\cap C=\emptyset.

Il existe alors un hyperplan affine H contenant L et qui vérifie lui aussi la condition : H\cap C=\emptyset.

De plus, H est un hyperplan fermé.

La forme analytique du théorème est due à Banach (1932) généralisant un résultat de Hahn qui s'intéresse dès 1920 aux espaces vectoriels normés. Il existe une généralisation du théorème de Hahn-Banach aux espaces vectoriels sur le corps des complexes due à Bohnenblust et Sobczyk (1938). Les difficultés de la généralisation du théorème de Hahn-Banach apparaissent même pour des espaces vectoriels de dimension finie.

Relations entre les deux énoncés et preuve de la forme « géométrique »

La forme géométrique du théorème —d'où on peut ensuite déduire une succession de variantes diverses relatives à la séparation des convexes— est la retranscription de la forme analytique pour le cas particulier où la fonction convexe qui y intervient est la jauge d'un ouvert convexe d'un espace normé. C'est d'ailleurs le cas dans les utilisations les plus simples et fondamentales du théorème en analyse fonctionnelle qu'on peut selon ses goûts lire depuis une version ou l'autre (on en verra un exemple plus bas).

Voyons de plus près comment la forme géométrique se déduit de la forme analytique :

On peut s'étonner que la forme géométrique fasse intervenir une topologie tandis que la forme analytique concerne un espace vectoriel sans structure additionnelle. En fait, il est tout à fait possible d'énoncer une forme géométrique dans un espace vectoriel quelconque : il faudra alors supposer que tout translaté du convexe C contenant l'origine est absorbant, à défaut de pouvoir donner un sens à « ouvert »  ; on n'a bien sûr plus le complément sur le caractère fermé de l'hyperplan obtenu tombe. La démonstration est la même.

La preuve de la forme « analytique »

Deux types d'idées bien distinctes sont à mettre bout à bout pour aboutir à une preuve dans le cadre de généralité où le théorème a été énoncé. Dans un premier temps, quelques calculs assez simples permettent de justifier l'extension de la forme linéaire f dans le cas particulier où G est de codimension 1 dans V. Une fois cette étape franchie, on a déjà le théorème en dimension finie (il suffit de faire grossir pas à pas le sous-espace où on a réussi à étendre f, d'une dimension à chaque pas, et jusqu'à atteindre la dimension de V). En revanche, pour les usages en dimension infinie, il faut adapter cette méthode fort simple d'avancée méthodique et appeler quelques techniques assez standardisées de théorie des ensembles : on exécute ainsi une récurrence transfinie, le plus souvent rédigée sous forme d'un appel au lemme de Zorn.

Page générée en 2.097 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise