Le premier théorème d'incomplétude peut être énoncé de la façon encore un peu approximative suivante (les termes techniques sont expliqués dans le paragraphe suivant).
De tels énoncés sont dits indécidables dans cette théorie. On dit également indépendants de la théorie.
Toujours dans l'article de 1931, Gödel en déduit le second théorème d'incomplétude :
Ces deux théorèmes ont été prouvés pour l'arithmétique de Peano et donc pour les théories plus fortes que celle-ci, en particulier les théories destinées à fonder les mathématiques, telles que la théorie des ensembles ou les Principia Mathematica.
Pour fixer les idées, on considère dorénavant que les théories en question sont, comme celles que l'on vient de mentionner (arithmétique de Peano, théorie des ensembles), des théories du premier ordre de la logique classique, même si les théorèmes d'incomplétude restent valides, sous les mêmes conditions, par exemple en logique intuitionniste ou en passant à l'ordre supérieur.
On peut reformuler le premier théorème d'incomplétude en disant que si une théorie T satisfait les hypothèses utiles, il existe un énoncé tel que chacune des deux théories obtenues l'une en ajoutant à T cet énoncé comme axiome, l'autre en ajoutant la négation de cet énoncé, sont cohérentes. Donnons-en la démonstration.
Étant donné un énoncé G, notons non G sa négation. On montre facilement qu'un énoncé G n'est pas démontrable dans T si et seulement si la théorie T + non G (la théorie T à laquelle on ajoute l'axiome non G) est cohérente. En effet, si G est démontrable dans T, T + non G est évidemment contradictoire. Réciproquement, supposons T + non G contradictoire. Cela signifie que, dans la théorie T, on peut déduire de non G une contradiction. On en déduit que G est conséquence de T (c'est un raisonnement par l'absurde).
Il est donc équivalent de dire qu'un énoncé G est indécidable dans une théorie cohérente T, et de dire que les deux théories T + non G et T + G sont cohérentes. L'énoncé G n'étant évidemment pas indécidable dans chacune de ces deux théories, on voit que la notion d'énoncé indécidable est par nature relative à une théorie donnée.
Ainsi, si G est un énoncé indécidable donné pour T par le premier théorème d'incomplétude, on aura, en appliquant à nouveau ce théorème, un nouvel énoncé indécidable dans la théorie T + G (et donc d'ailleurs indécidable aussi dans la théorie T). De fait, quand le théorème d'incomplétude s'applique à une théorie T, il s'applique à toutes les extensions cohérentes de cette théorie, tant qu'elles restent récursivement axiomatisables : il n'y a aucun moyen effectif de compléter une telle théorie.
On peut également noter que, quelle que soit la théorie en jeu, Gödel a montré que l'énoncé indécidable qu'il construit pour démontrer son théorème est arithmétique, c’est-à-dire qu'on peut l'exprimer dans le langage de l'arithmétique, même si la théorie est plus expressive. Il s'agit même d'un énoncé de l'arithmétique qui, bien que fastidieux à écrire explicitement, est logiquement assez simple (en un sens qui sera précisé en fin d'article). Par exemple, on obtiendra par le théorème de Gödel appliqué à la théorie des ensembles de Zermelo-Fraenkel un énoncé arithmétique, qui sera pourtant indécidable dans cette même théorie des ensembles.
L'énoncé du second théorème d'incomplétude a ceci de particulier, qu'il utilise la formalisation de la théorie dans elle-même, puisqu'il parle de la cohérence de la théorie comme d'un énoncé de celle-ci. C'est assez inhabituel en mathématiques, et cela entraîne facilement des confusions. Les conséquences qui suivent sont immédiates, au sens où elles se déduisent « simplement » du second théorème d'incomplétude, mais cette simplicité elle-même peut n'avoir rien d'immédiate.
Il peut être utile pour comprendre l'énoncé du second théorème d'incomplétude, de le reformuler par contraposée :
En revanche, une théorie qui démontre un énoncé exprimant qu'elle n'est pas cohérente, peut très bien ne pas être contradictoire, comme on le déduit du second théorème d'incomplétude lui-même !
Donnons en une preuve. Appelons cohT un énoncé qui exprime la cohérence de T dans la théorie T. De la même façon qu'au paragraphe précédent pour le premier théorème, on reformule le second théorème d'incomplétude en disant que, sous les hypothèses utiles sur T, si la théorie T est cohérente, la théorie T'=T + non cohT est encore cohérente. Rappelons que « T n'est pas cohérente », signifie qu'il existe une preuve d'une contradiction dans T. Une preuve dans T est aussi une preuve dans T' , qui a juste un axiome supplémentaire. Il est donc simple de montrer dans une théorie telle que T, qui satisfait les hypothèses du théorème de Gödel, que non cohT a pour conséquence non cohT' (n'oublions pas cependant que cohT et cohT' sont des énoncés exprimés dans le langage de ces théories, il faudrait, pour que la preuve soit vraiment complète, rentrer dans le détail de cette représentation pour montrer cette implication). On a donc déduit du second théorème d'incomplétude, et de l'existence d'une théorie cohérente T qui satisfait les hypothèses de ce théorème -- prenons par exemple l'arithmétique de Peano -- l'existence d'une théorie T' cohérente qui démontre non cohT', à savoir un énoncé exprimant qu'elle n'est pas cohérente. De telles théories sont fort heureusement pathologiques : on n'en a jamais rencontré parmi les théories mathématiques usuelles. Ce résultat peut choquer l'intuition, mais il faut bien voir que l'on peut reformuler le second théorème d'incomplétude en disant que toute théorie cohérente qui satisfait les hypothèses utiles a une extension qui démontre la négation de sa cohérence.
A contrario une théorie incohérente, dans laquelle tous les énoncés sont prouvables, démontrera évidemment un énoncé exprimant qu'elle est cohérente.
On voit par ces diverses remarques que le second théorème d'incomplétude ne dit rien en défaveur de la cohérence d'une théorie à laquelle il s'applique, par exemple la cohérence de l'arithmétique de Peano. Tout ce qu'il dit de cette dernière, c'est qu'elle ne peut se prouver que dans une théorie logiquement plus forte.
Un autre exemple d'application simple, mais assez surprenante, du second théorème d'incomplétude est le théorème de Löb, qui affirme que, dans une théorie T qui satisfait les hypothèses utiles, prouver dans T un énoncé sous l'hypothèse que cet énoncé est prouvable dans la théorie, revient à prouver l'énoncé. Autrement dit cette hypothèse est inutile.