Tenseur - Définition et Explications

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Typologie

Dans le cas de l'ordre 2, un tenseur peut être symétrique ou antisymétrique (ou ni l'un, ni l'autre).

Pour un tenseur symétrique, on a la relation Tab = Tba.

Pour un tenseur antisymétrique, on a la relation Tab = -Tba.

En général, un tenseur (Tenseur) n'est ni symétrique, ni antisymétrique. Un tenseur quelconque peut cependant être décomposé en une partie symétrique S et une partie antisymétrique A, avec les relations :

  • Sab = 1/2(Tab + Tba )
  • Aab = 1/2(Tab - Tba )

Les parties symétriques et antisymétriques réunies rassemblent autant d'information que le tenseur originel.

Cette règle peut être étendue aux tenseurs d'ordre quelconque. On dira alors que le tenseur est symétrique pour une paire d'indice, s'il est invariant par échange des deux indices, et qu'il est antisymétrique pour une paire d'indice s'il se transforme en son opposé ( En mathématique, l'opposé d’un nombre est le nombre tel que, lorsqu’il est à ajouté à n donne zéro. En botanique, les organes d'une plante sont dits opposés lorsqu'ils sont insérés au même niveau, l'un en face de...) par échange des deux indices.

Les indices de la paire considérée doivent avoir même valence.(Dans le cas contraire la propriété de symétrie dépendrait de la base choisie).

Dans le cas particulier d'un espace vectoriel (En algèbre linéaire, un espace vectoriel est un ensemble muni d'une structure permettant d'effectuer des combinaisons linéaires.) de dimension (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce sont sa longueur, sa largeur et sa profondeur/son épaisseur, ou bien son diamètre si...) 3, un tenseur antisymétrique d'ordre 2 porte le nom de pseudovecteur. (dont la matrice n'est antisymétrique qu'en base orthonormale (Soit En un espace vectoriel euclidien de dimension n, où n est un entier naturel non nul, et , une base de En.) ou si...)

Tenseur symétrique

Un tenseur est symétrique s'il est inchangé par des permutations des indices hauts ou une permutation (En mathématiques, la notion de permutation exprime l'idée de réarrangement d'objets discernables. Une permutation de n objets distincts rangés dans un certain ordre, correspond à un...) des indices bas. Un tenseur d'ordre (0,2) ou bien (2,0) est symétrique si et seulement si ses composantes forment une matrice symétrique (ce qui exige que A soit une matrice carrée.). Le fait pour une matrice d'être symétrique ne dépend pas de la base choisie (la propriété est conservée entre deux matrices semblables).

Tenseurs antisymétriques

Un tenseur est antisymétrique si, par une permutation quelconque des indices, il subit un changement de signe qui est le signe de la permutation. Un tenseur d'ordres (0,2) ou (2,0) est antisymétrique si et seulement si ses composantes forment une matrice antisymétrique (En algèbre linéaire, une matrice carrée A est dite antisymétrique si sa transposée est égale à son opposé ; c'est-à-dire si elle...). Pour un tenseur antisymétrique, les composantes dans lesquelles un indice se répète au moins deux fois sont toutes nulles. Par exemple, les j composantes Tiij du tenseur Tabc sont nulles. De ce fait, un tenseur de type (h,k) avec k > n ou h > n est nécessairement nul, parce que l'on ne peut avoir k (ou h) valeurs différentes dans \{1,\ldots,n\}. En outre (à une multiplication (La multiplication est l'une des quatre opérations de l'arithmétique élémentaire avec l'addition, la soustraction et la division .) par un scalaire (Un vrai scalaire est un nombre qui est indépendant du choix de la base choisie pour exprimer les vecteurs, par opposition à un pseudoscalaire, qui est un nombre qui peut dépendre de la base.) près), il existe un seul tenseur antisymétrique d'ordre (0,n) : le déterminant, ou tenseur de Levi-Civita.

Les tenseurs antisymétriques sont utilisés pour construire les formes differentielles.

Page générée en 0.136 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique