Tenseur - Définition et Explications

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Composantes

Vecteurs

Dans la base B (\vec{e}_1,\vec{e}_2,\vec{e}_3), les composantes du vecteur \vec u sont (u1, u2, u3). Dans la base B' (\vec{e'}_1,\vec{e'}_2,\vec{e'}_3), elles sont (u'1, u'2, u'3). On cherche comment passer (Le genre Passer a été créé par le zoologiste français Mathurin Jacques Brisson (1723-1806) en 1760.) de l'une à l'autre des représentations.

Dans la base B, les vecteurs de la base B' s'écrivent :

\vec{e'}_{i} = e_{1i}\cdot \vec{e}_{1} + e_{2i}\cdot \vec{e}_{2} + e_{3i}\cdot \vec{e}_{3}

Par définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.) d'une base, chaque vecteur (En mathématiques, un vecteur est un élément d'un espace vectoriel, ce qui permet d'effectuer des opérations d'addition et de multiplication par un scalaire. Un...) \vec{e}_{i} se décompose selon une combinaison (Une combinaison peut être :) linéaire unique des vecteurs de B'. On peut ainsi définir la matrice de changement de base P de B vers B' :

P = \begin{pmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{pmatrix}

les colonnes de la matrice de changement de base sont les coordonnées des vecteurs de l'ancienne base dans la nouvelle. On a alors

(u_{1},u_{2},u_{3}) = P \cdot (u'_{1},u'_{2},u'_{3}) et
(u'_{1},u'_{2},u'_{3}) = P^{-1} \cdot (u_{1},u_{2},u_{3}).

Lorsque les deux bases B et B' sont orthonormées, P vérifie en outre

P − 1 = tP.

Le changement de base se fait par multiplication (La multiplication est l'une des quatre opérations de l'arithmétique élémentaire avec l'addition, la soustraction et la division .) d'une seule matrice de changement de base, le tenseur (Tenseur) est dit d'ordre 1.

Matrices

Une matrice M représente une application linéaire (En mathématiques, une application linéaire (aussi appelée opérateur linéaire ou transformation linéaire) est une application entre deux espaces vectoriels qui respecte l’addition des vecteurs et la...) ƒ d'un espace vers un autre pour une base donnée (Dans les technologies de l'information, une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction, d'un événement, etc.) dans chaque espace. On peut donc changer de base dans l'espace de départ et dans l'espace d'arrivée. On peut donc définir deux matrices, P1 et P2 pour chacun des espaces. La matrice M' représentant ƒ pour les deux nouvelles bases se calcule donc en faisant

M' = ^{\rm t}P_{1} \cdot M \cdot P_{2}

Le changement de base se fait par multiplication de deux matrices de changement de base, le tenseur est dit d'ordre 2.

Formes linéaires

Considérons un espace à trois dimensions (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce sont sa longueur, sa largeur et sa profondeur/son épaisseur, ou bien son diamètre si c'est une pièce de révolution.) muni d'une base non orthogonale (on va la supposer normée pour simplifier la présentation). En effet, il y a de nombreux exemples dans la nature où il y a des axes « naturels » qui ne sont pas orthogonaux, par exemples les axes de certains cristaux. En fait, lorsqu'un phénomène est anisotrope (L'anisotropie (contraire d'isotropie) est la propriété d'être dépendant de la direction. Quelque chose d'anisotrope pourra présenter différentes caractéristiques selon la...), on peut souvent trouver des axes dits « principaux » pour lesquels les calculs se simplifient, et ces axes ne sont pas toujours orthogonaux.

Considérons une forme linéaire (En algèbre linéaire, les formes linéaires désignent un type particulier d'applications linéaires. L'étude spécifique qu'on leur accorde est motivée par le fait qu'elles...) ƒ sur cet espace, qui à un vecteur \vec u associe un scalaire (Un vrai scalaire est un nombre qui est indépendant du choix de la base choisie pour exprimer les vecteurs, par opposition à un pseudoscalaire, qui est un nombre qui peut...)

f(\vec u) = f^{1}\cdot u_{1} + f^{2}\cdot u_{2} + f^{3}\cdot u_{3}

(les indices relatifs à la forme linéaire sont notés en haut pour permettre de les distinguer). Considérons la base (\vec{e}^{\ *i}), dite « base duale », définie par

\vec{e}^{\ *1} = \vec{e}_{2}\wedge \vec{e}_{3}
\vec{e}^{\ *2} = \vec{e}_{3}\wedge \vec{e}_{1}
\vec{e}^{\ *3} = \vec{e}_{1}\wedge \vec{e}_{2}

on a alors

\vec{e}_{i} \cdot \vec{e}^{\ *j} = \delta_{i}^j (symbole de Kronecker)

soit

\vec{e}_{i} \cdot \vec{e}^{\ *j} = 1 si i = j
\vec{e}_{i} \cdot \vec{e}^{\ *j} = 0 sinon

Si l'on définit le vecteur

\vec{f} = f^{1} \cdot \vec{e}^{\ *1} + f^{2} \cdot \vec{e}^{\ *2} + f^{3} \cdot \vec{e}^{\ *3}

on peut alors écrire

f(\vec u) = \vec{f} \cdot \vec u

La base des fonctions g i « produit scalaire par \vec{e}^{\ *i} »

g^i\ : E \rightarrow \mathbb{R}
\vec u \mapsto \vec{e}^{\ *i} \cdot \vec u

est une base des formes linéaires de l'espace ; on identifie souvent cette base de fonctions (g i ) avec la base de vecteurs (\vec{e}^{\ *i}) elle-même. L'espace vectoriel (En algèbre linéaire, un espace vectoriel est un ensemble muni d'une structure permettant d'effectuer des combinaisons linéaires.) formé par les formes linéaires est appelé « espace dual » ou « espace réciproque ».

Si l'on fait un changement de base de l'espace direct, alors les composantes du vecteur \vec u se transforment selon

\hat{u}_{i} = \sum_{j} {p^j}_{i}\cdot u_{j}

p ji est le coefficient (En mathématiques un coefficient est un facteur multiplicatif qui dépend d'un certain objet, comme une variable (par exemple, les coefficients d'un polynôme), un espace vectoriel, une fonction de base et ainsi de suite....) de la matrice de changement de base (noté eji dans le paragraphe précédent). En revanche, les composantes de \vec{f} se transforment selon

\hat{f}^{i} = \sum_{j} {p^i}_{j}\cdot f^{j}

on voit que dans le cas du changement de la base de formes linéaires, on multiplie par la matrice de changement de base, alors que dans le cas du changement de la base de vecteurs, on multiplie par sa transposée.

Variance ( En statistique et en probabilité, variance En thermodynamique, variance )

On voit donc que l'on a deux types d'indices. D'une part des indices de type « vecteur », notés avec un indice en bas (par exemple ui ), obtenus par projection (La projection cartographique est un ensemble de techniques permettant de représenter la surface de la Terre dans son ensemble ou en partie sur la surface plane d'une carte.) du vecteur sur les axes parallèlement aux autres axes, et se transformant lors d'un changement de base par le produit de la transposée de la matrice de changement de base (P). Ces indices sont dits contravariants.

D'autre part des indices de type « forme linéaire », notés avec un indice en haut (par exemple ƒi ), obtenus par projection sur les axes perpendiculairement aux axes (\vec{e}^{\ *2} et \vec{e}^{\ *3} sont perpendiculaires à \vec{e}_{1}), et se transformant lors d'un changement de base par le produit de la matrice « directe » de changement de base (P). Ces indices sont dites covariants.

D'après la formule de changement de base des matrices, on voit que celles-ci sont une fois covariantes, une fois contravariantes, on devrait donc noter Mi j. Toutefois, on n'utilise que rarement cette notation tensorielle pour les matrices.

Convention d'Einstein

Un tenseur peut avoir des composantes covariantes et contravariantes, ce qui explique que certains indices soient notés en haut et d'autres en bas, par exemple Tabc.

On adopte souvent la convention de notation d'Einstein qui consiste à sommer lorsqu'un indice se trouve en haut et en bas dans un produit, par exemple

\sum_{j} p^{j}_{i}\cdot u_{j} et \sum_{j} p^{i}_{j}\cdot f^{\ j}

se notent respectivement

p^{j}_{i}\cdot u_{j} et p^{i}_{j}\cdot f^{\ j}
Page générée en 0.075 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique