Téléportation quantique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Protocole de téléportation quantique

Nous arrivons enfin au vif du sujet à savoir le principe de la téléportation quantique. Il est de tradition d’appeler les protagonistes d’un scénario de communication Alice et Bob. Alice dispose d’un qubit  \vert\psi_{A}\rangle qu’elle souhaite transmettre à Bob. Elle dispose pour cela de deux canaux. Un canal classique et un canal quantique dit EPR, en référence au paradoxe Einstein-Podolsky–Rosen. On précisera ultérieurement le sens d’une telle dénomination lorsque l’on présentera la téléportation quantique dans le régime des variables continues. À ce stade, il suffit amplement de dire qu’il s’agit d’un canal composé de deux qubits maximalement intriqués, et dont l’état s’écrit :

 \vert\phi^{+}_{AB}\rangle = \frac{1}{\sqrt{2}}\left[\vert 0_{A}0_{B}\rangle + \vert 1_{A}1_{B}\rangle \right] \neq \vert\phi_{A}\rangle\otimes\vert\phi_{B}\rangle .

En effet, pour un tel état, il est impossible de factoriser l’état de la paire de qubits sous la forme d’un produit tensoriel. Cette inséparabilité se traduit par de très fortes corrélations sur les résultats de mesure qu’il est impossible d’expliquer par des modèles classiques. On peut regarder à ce propos l’article sur l'expérience d'Aspect.

Alice qui souhaite communiquer à Bob l’état de son qubit sans être importunée par les indiscrétions d’Eve, applique à son qubit  \vert\psi_{1}\rangle et au qubit de la part intriqué l’algorithme quantique suivant :

A) L’état initial du qubit d’Alice et de la paire intriquée s’écrit

 \vert initial \rangle = \vert\psi_{1}\rangle \otimes \vert\phi^{+}_{AB}\rangle .

B) On fait interagir le qubit d’Alice avec le qubit EPR qu’elle détient via une porte cNOT dont le qubit de contrôle est le qubit d’Alice  \vert\psi_{A}\rangle . L’état intermédiaire se met alors sous la forme suivante :

 \vert inter. \rangle =\frac{\alpha}{\sqrt{2}}\vert 0_{A}\rangle\left[\vert 0_{A}0_{B}\rangle + \vert 1_{A}1_{B}\rangle\right]+\frac{\beta}{\sqrt{2}}\vert 1_{A}\rangle\left[\vert 1_{A}0_{B}\rangle + \vert 0_{A}1_{B}\rangle\right]

C) Ensuite, Alice fait subir à son qubit une opération d'Hadamard Hd qui donne le résultat final :

 \begin{matrix} \left\vert final \right\rangle & = & \frac{1}{2} \left\vert 0_A0_A \right\rangle \left( \alpha \left\vert 0_B \right\rangle + \beta  \left\vert 1_B \right\rangle \right) \\ & + & \frac{1}{2} \left\vert 0_A1_A \right\rangle \left( \beta  \left\vert 0_B \right\rangle + \alpha \left\vert 1_B \right\rangle \right) \\ & + & \frac{1}{2} \left\vert 1_A0_A \right\rangle \left( \alpha \left\vert 0_B \right\rangle - \beta  \left\vert 1_B \right\rangle \right) \\ & - & \frac{1}{2} \left\vert 1_A1_A \right\rangle \left( \beta  \left\vert 0_B \right\rangle - \alpha \left\vert 1_B \right\rangle \right) \end{matrix}

On constate alors que l’état du qubit d’Alice est téléporté sur le qubit de Bob dans 25 % des cas lorsque Alice mesure pour ces deux qubits les états binaires 0. Dans les autres cas, Alice doit transmettre à Bob le résultat de ces mesures, appelées mesures de Bell, afin que ce dernier puisse finaliser la téléportation. La théorie de la relativité restreinte d’Einstein n’est donc pas violée puisque la communication des résultats des mesures de Bell se fait par un canal classique. En effet, on montre sans difficulté que les états de Bob correspondant à chaque possibilité sont identiques à l’état du qubit d’Alice à une opération unitaire près. Par exemple, lorsque Alice projette ces deux qubits sur l’état  \vert 0_{A}1_{A}\rangle l’état de Bob se retrouve alors dans l’état  \sigma_{x}\vert\psi_{A}\rangle , où σx désigne une des matrices de Pauli sur laquelle il est possible de décomposer tout opérateur hermitien (c'est-à-dire qu'une observable physique est représentée en physique quantique par un opérateur hermitien garantissant ainsi des valeurs propres réelles qui sont les grandeurs mesurables). Enfin, il faut souligner que le théorème de non-clonage quantique est respecté puisque le qubit d’Alice est complètement réduit lors des opérations et des mesures d’Alice. Ce schéma a été proposé en 1993 par Charles Bennett (alors chez IBM) sous une autre forme plus générale consistant à projeter les EPR et qubits à téléporter sur des états intriqués appelés états de Bell.

Compression et Intrication de faisceaux

Dans cette section, nous allons établir le lien très simple existant entre la compression de deux faisceaux et l’intrication de ces derniers. Pour celà, on considère deux faisceaux comprimés en amplitude selon des quadratures orthogonales en incidence sur une lame séparatrice 50/50 (SP). On notera A1 et A2 ces faisceaux incidents, et Aa et Ab les faisceaux émergents. La relation d'entrée sortie de la lame séparatrice donne :

 A_{1}= \frac{A_{a}+A_{b}}{\sqrt{2}}, A_{2}= \frac{A_{a}-A_{b}}{\sqrt{2}}

Si les faisceaux incidents sont comprimés de manière adéquate, on trouve en termes des variances :

 V\left(q_{1}\right)= \frac{V\left(q_{a}+q_{b}\right)}{2}, V\left(p_{2}\right)= \frac{V\left(p_{a}-p_{b}\right)}{2}

Dans le cas d'une compression en amplitude maximale (V\left(q_{1},p_{2}\right)\rightarrow 0 ), on obtient deux faisceaux parfaitement corrélés en amplitude et anti-corrélés en phase. Il s’agit en fait de faisceaux EPR puisqu’une mesure sur l’un des faisceaux permet de déterminer l’état de l’autre même s'il est séparé spatialement du premier.

Enfin, il existe deux méthodes remarquables pour produire des états comprimés. Il s'agit de l'effet Kerr et de l'amplification paramétrique. Dans le premier cas, l'effet Kerr modifie la forme du disque des fluctuations du vide en une ellipse oblique globalement comprimée en amplitude. Pour l'amplification paramétrique, la configuration la plus efficace est de se placer sous le seuil d'oscillation (i.e. les pertes de la cavité ne sont plus compensées par la pompe) et en dégénerescence de fréquence. On obtient alors du vide comprimé en sortie.

Page générée en 0.542 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise