Technétium - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Utilisations

Utilisation en médecine

Le technétium 99m est particulièrement intéressant pour les applications médicales : la radiation émise par désintégration de cet isotope a la même longueur d'onde que les rayons X utilisés en radiographie classique, ce qui lui confère une longueur de pénétration adaptée tout en causant des dégâts minimes pour un photon gamma. De plus, la demi-vie très courte de cet isotope conjuguée à la demi-vie relativement longue de l'isotope fils Tc-99 lui permet d'être éliminé du corps avant de se désintégrer à nouveau. Ceci permet de réaliser un diagnostic nucléaire au prix de l'introduction d'une dose relativement faible de radiation dans l'organisme (mesurée en sievert).

Le technétium 99 métastable (99mTc) est le radioisotope le plus utilisé en imagerie médicale nucléaire en tant que traceur. Ses caractéristiques physiques sont presque idéales pour cet usage :

  • la demi-vie de 6 heures est assez longue pour permettre de suivre les processus physiologiques d'intérêt, mais assez courte pour limiter l'irradiation inutile.
  • l'énergie du photon gamma, 140,5 keV, est idéale puisque assez énergétique pour traverser les tissus vivants, mais assez faible pour pouvoir être détectée commodément : elle peut être absorbée efficacement par un cristal d'iodure de sodium d'épaisseur typique de l'ordre de 10 à 15 mm.
  • l'émission de photons gamma est élevée (88,5 photons pour 100 désintégrations). Peu de particules non pénétrantes sont émises, d'où une plus faible absorption d'énergie par les tissus vivants.

De plus, il est facilement disponible dans les hôpitaux grâce à un générateur de technétium (de la taille d'une batterie automobile). Le générateur contient du molybdène 99 radioactif, attaché (adsorbé) sur une colonne d'alumine. Le molybdène se désintègre pour donner du 99mTc, qui est récupéré par rinçage de la colonne (élution) dans une solution physiologique (serum physiologique) sous la forme de pertechnétate de sodium (Na+ TcO4-). Le générateur est alors élué afin de récupérer une solution (appelée éluat) d'activité nécessaire pour la préparation des produits utilisés en médecine nucléaire.

Fixé à de nombreuses molécules présentant un intérêt biologique, le 99mTc permet d'en suivre la distribution dans le corps humain, grâce à des détecteurs de radioactivité appelés gamma-caméras (voir scintigraphie).

Le 99mTc est notamment utilisé en médecine nucléaire pour le repérage du ganglion sentinelle en particulier dans le traitement chirurgical du cancer du sein.

Le 99mTc est aussi utilisé sous forme de technétium-méthoxyisobutylisonitrile (Tc-MIBI) pour marquer les cellules du muscle cardiaque et faire une scintigraphie tomographique. Cet examen sert à diagnostiquer la présence de tissus non irrigués dans le myocarde.

Le marquage des globules rouges lors d'une scintigraphie ventriculaire, est aussi fait avec du 99mTc sous forme de pertechnétate de sodium. Le but d'une ventriculographie est de caractériser la fonction cardiaque (volume d'éjection, fraction d'éjection, etc...).

La scintigraphie osseuse utilise le Tc combiné à la molécule vectrice HDP ou HMDP.

L'hexa-methyl-propylene-amine-oxime (HMPAO) est une molécule de synthèse qui peut être marquée par le 99mTc. Après injection intraveineuse, l'HMPAO se fixe dans le cerveau (entre autres) quasiment proportionnellement au débit sanguin cérébral. On peut ainsi avoir une idée du débit sanguin cérébral régional en mesurant la quantité d'HMPAO fixée.

Utilisations industrielle et chimique

Le technétium 99 se désintègre par radioactivité β en émettant des particules β de faible énergie mais sans émission de rayons γ. Le taux d'émission décroît très faiblement dans le temps grâce à sa longue demi-vie. Il peut être extrait avec une grande pureté chimique et isotopique des déchets radioactifs. Pour cette raison, il est utilisé comme émetteur de particules β pour l'étalonnage des équipements du NIST. Le technétium 99 a aussi été utilisé en optoélectronique et dans les batteries nucléaires nanométriques.

Comme le rhénium et le palladium, le technétium est peut être utilisé comme catalyseur. Pour certaines réactions comme la déshydrogénation de l'alcool isopropylique, il est de loin plus efficace que le palladium et le rhénium. Cependant son activité radioactive pose des problèmes de sûreté.

Dans certaines circonstances, une petite concentration (5×10−5 mol/L) d'ion pertechnétate dans l'eau peut protéger le fer et l'acier de la corrosion. Une expérience a montré qu'un échantillon placé dans une solution de pertechnétate pouvait rester intact pendant 20 ans sans être attaqué. Par comparaison, l'ion chromate CrO42− peut également inhiber la corrosion, mais pour des concentrations 10 fois plus élevées. Le pertechnétate a donc été proposé comme inhibiteur de la corrosion anodique bien que sa radioactivité pose problème.

Le mécanisme par lequel le pertechnétate empêche la corrosion n'est pas bien compris, mais semble lié à la formation réversible d'une fine couche à la surface de l'échantillon. Une théorie soutient que le pertechnétate réagit à la surface de l'acier pour former une couche de dioxyde de technétium qui empêche la corrosion. Ce même effet permet d'expliquer pourquoi il est possible de retirer le pertechnétate de l'eau en la filtrant avec de la poudre de fer. Le même résultat est obtenu en utilisant du charbon actif. L'effet disparait rapidement si la concentration en pertechnétate tombe en dessous de la concentration minimale ou si d'autres ions sont ajoutés en trop forte concentration.

Page générée en 0.101 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise