Tableau périodique des éléments - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Construction du tableau

  s1 s2 f d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 p1 p2 p3 p4 p5 p6
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba * Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra * Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Uuq Uup Uuh Uus Uuo
   
  f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14  
  * La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb  
  * Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No  
 
  Bloc s Bloc f Bloc d Bloc p  

Dans la mesure où les propriétés physicochimiques des éléments reposent sur leur configuration électronique, cette dernière est sous-jacente à l'agencement du tableau périodique. Ainsi, chaque ligne du tableau (appelée période) correspond à une couche électronique, identifiée par son nombre quantique principal, noté n : il y a sept couches électroniques connues à l'état fondamental, donc sept périodes dans le tableau périodique standard, numérotées de 1 à 7. Chaque période est elle-même scindée en un nombre variable de blocs, qui correspondent aux orbitales atomiques, identifiées par leur nombre quantique secondaire, noté l : il y a quatre types d'orbitales atomiques connues à l'état fondamental, notées s, p, d et f (ces lettres viennent d'abréviations utilisées initialement en spectroscopie) et pouvant contenir chacune respectivement 2, 6, 10 et 14 électrons ; c'est la raison pour laquelle on parle de bloc s, bloc p, bloc d et bloc f.

Si l'on respecte la construction du tableau par blocs en fonction des orbitales atomiques, l'hélium doit se trouver au-dessus du béryllium dans la colonne 2 (celle dont les atomes ont une sous-couche externe ns2) et non au-dessus du néon dans la colonne 18 (dont les atomes ont une sous-couche externe np6), comme c'est le cas dans la petite table ci-contre ; l'hélium est positionné usuellement dans la colonne 18 car c'est celle des gaz rares, dont il fait chimiquement partie.

Règle de Klechkowski

Toutes les sous-couches d'une période n'appartiennent pas forcément à la même couche électronique (c'est le cas à partir de la quatrième période) : à partir de la troisième couche électronique, les sous-couches d'une même couche sont en effet réparties sur plusieurs périodes ; les électrons se distribuent en fait sur les différents niveaux d'énergie quantiques autour de l'atome selon un principe d'Aufbau (c'est-à-dire « construction » en allemand) dans des sous-couches électroniques dont l'ordre précis est donné par la règle de Klechkowski :


Sous-couche 1s     1 case quantique → 2 électrons     → 2 éléments sur la 1ère période    

Sous-couche 2s     1 case quantique → 2 électrons      
Sous-couche 2p     3 cases quantiques → 6 électrons     → 8 éléments sur la 2ème période    

Sous-couche 3s     1 case quantique → 2 électrons      
Sous-couche 3p     3 cases quantiques → 6 électrons     → 8 éléments sur la 3ème période    

Sous-couche 4s     1 case quantique → 2 électrons      
Sous-couche 3d     5 cases quantiques → 10 électrons      
Sous-couche 4p     3 cases quantiques → 6 électrons     → 18 éléments sur la 4ème période    

Sous-couche 5s     1 case quantique → 2 électrons      
Sous-couche 4d     5 cases quantiques → 10 électrons      
Sous-couche 5p     3 cases quantiques → 6 électrons     → 18 éléments sur la 5ème période    

Sous-couche 6s     1 case quantique → 2 électrons      
Sous-couche 4f     7 cases quantiques → 14 électrons      
Sous-couche 5d     5 cases quantiques → 10 électrons      
Sous-couche 6p     3 cases quantiques → 6 électrons     → 32 éléments sur la 6ème période    

Sous-couche 7s     1 case quantique → 2 électrons      
Sous-couche 5f     7 cases quantiques → 14 électrons      
Sous-couche 6d     5 cases quantiques → 10 électrons      
Sous-couche 7p     3 cases quantiques → 6 électrons     → 32 éléments sur la 7ème période    

C'est la succession des sous-couches électroniques de chaque période qui détermine la structure du tableau périodique, chaque période étant définie par le retour d'une sous-couche s suivant une sous-couche p de la période précédente.

Exceptions et règle de Hund

La règle de Klechkowski est observée pour plus de 80 % des 103 éléments dont la configuration électronique à l'état fondamental est connue avec précision, mais une vingtaine d'éléments y font exception. L'état fondamental est en effet par définition celui dont l'énergie est la plus faible, et le spin des électrons entre en jeu pour déterminer cette énergie : plus le spin résultant des électrons d'une orbitale atomique est élevé, plus stable est la configuration de ces électrons sur cette orbitale (règle de Hund). Il s'ensuit que, pour les éléments du bloc d et du bloc f (métaux de transition, lanthanides et actinides), il est énergétiquement moins favorable de suivre la règle de Klechkowski que de favoriser l'occupation impaire des sous-couches les plus externes lorsque la couche d ou f est vide, à moitié remplie ou entièrement remplie, car l'écart d'énergie entre ces sous-couches est inférieur au gain d'énergie induit par la redistribution des électrons maximisant leur spin résultant (dans le tableau qui suit, les électrons de cœur sont en gris) :

Élément chimique Série chimique Configuration électronique
no 24 Cr Chrome Métal de transition 1s2 2s2 2p6 3s2 3p6 4s1 3d5
no 29 Cu Cuivre Métal de transition 1s2 2s2 2p6 3s2 3p6 4s1 3d10
no 41 Nb Niobium Métal de transition 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d4
no 42 Mo Molybdène Métal de transition 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d5
no 44 Ru Ruthénium Métal de transition 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d7
no 45 Rh Rhodium Métal de transition 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d8
no 46 Pd Palladium Métal de transition 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 4d10
no 47 Ag Argent Métal de transition 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d10
no 57 La Lanthane Lanthanide 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 5d1
no 58 Ce Cérium Lanthanide 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f1 5d1
no 64 Gd Gadolinium Lanthanide 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f7 5d1
no 78 Pt Platine Métal de transition 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s1 4f14 5d9
no 79 Au Or Métal de transition 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s1 4f14 5d10
no 89 Ac Actinium Actinide 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 6d1
no 90 Th Thorium Actinide 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 6d2
no 91 Pa Protactinium Actinide 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f2 6d1
no 92 U Uranium Actinide 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f3 6d1
no 96 Cm Curium Actinide 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f7 6d1
no 103 Lr Lawrencium Actinide 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 7p1
Page générée en 0.078 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise