Table des symboles mathématiques - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En mathématiques, certains symboles sont fréquemment utilisés. Le tableau suivant représente une aide pour les non-mathématiciens qui ne sont pas habitués à ces symboles. Dans la table, sont précisés pour chaque symbole, le nom, la prononciation et la branche des mathématiques dans laquelle le symbole est principalement utilisé. En plus, la quatrième colonne contient une définition informelle et la dernière donne un court exemple apportant une explication sur l'utilisation du symbole.

Du fait de leur utilisation répandue, il existe un grand nombre de façons différentes de représenter certains symboles. Ce tableau ne saurait prétendre à l'exhaustivité.

Logique

Symbole
(TeX)
Symbole
(utf8)
Nom Signification Exemples
Prononciation
Branche
\Rightarrow\, Implication A \Rightarrow B\, signifie « si A est vraie, alors B est vraie aussi ; si A est fausse alors on ne peut rien dire de la vérité de B ».
Parfois, on utilise \rightarrow\, au lieu de \Rightarrow\,
x = 2 \Rightarrow x^2 = 4\, est vraie, mais x^2 = 4 \Rightarrow x = 2\, est fausse (puisque x=−2 est aussi une solution).
« implique » ou « si... alors »
Logique
\Leftrightarrow Équivalence logique A \Leftrightarrow B signifie : « A est vraie quand B est vraie et A est fausse quand B est fausse ». x + 5 = y + 2 \Leftrightarrow x + 3 = y\,
« si et seulement si » ou « équivaut à »
Logique
\wedge Conjonction logique A \wedge B est vraie si et seulement si A et B sont vraies (donc fausse si A ou B ou A et B sont fausses) (n>2)\wedge (n<4)\Leftrightarrow (n=3), si n est un entier naturel
« et »
Logique
\vee Disjonction logique A\vee B est vraie quand A ou B (ou les deux) sont vraies et fausse quand les deux sont fausses. (n\leqslant 2)\vee (n\geqslant 4)\Leftrightarrow n\ne 3, si n est un entier naturel
« ou »
Logique
\neg ¬ Négation logique \neg A est vraie quand A est fausse et fausse quand A est vraie \neg (A\wedge B)\Leftrightarrow (\neg A)\vee (\neg B)
x\notin S\Leftrightarrow \neg(x\in S)
« non »
Logique
\forall Quantificateur universel \forall x, P(x) signifie : « P(x) est vraie pour tout x ». \forall n\in \mathbb N, n^2\geqslant n
« Quel que soit », « pour tout »
Logique
\exists Quantificateur existentiel \exists x, P(x) signifie : « il existe au moins un x tel que P(x) soit vraie » \exists n\in \N, n+5=2\times n (5 répond en effet à la question)
« il existe au moins un ... tel que »
Logique

Autres symboles mathématiques

D'autres symboles sont définis par Unicode dans les plages suivantes:

Plage Nom officiel du bloc
2000 – 206F Ponctuation générale
2070 – 209F Exposants et indices
20D0 – 20FF Signes combinatoires pour symboles
2150 – 218F Formes numérales
2190 – 21FF Flèches
2200 – 22FF Opérateurs mathématiques
2300 – 23FF Signes techniques divers (2336 – 237A = symboles APL)
25A0 – 25FF Formes géométriques
2600 – 26FF Symboles divers
2700 – 27BF Casseau
27C0 – 27EF Divers symboles mathématiques - A
27F0 – 27FF Supplément A de flèches
2900 – 297F Supplément B de flèches
2980 – 29FF Divers symboles mathématiques-B
2A00 – 2AFF Opérateurs mathématiques supplémentaires
2B00 – 2BFF Divers symboles et flèches
3000 – 303F Symboles et ponctuation Chinois, japonais et coréen (CJC)
10100 – 1013F Nombres égéens
1D400 – 1D7FF Symboles mathématiques alphanumériques
Page générée en 1.320 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise