Symétrie (physique) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction


En physique la notion de symétrie, appelée aussi invariance, renvoie à la possibilité de considérer un même système physique selon plusieurs points de vues distincts en termes de description mais équivalents quant aux prédictions effectuées sur son évolution.

Cet article se propose de passer en revue les principaux types de symétries rencontrés en physique, de décrire brièvement leur implémentation formelle et enfin de présenter les mécanismes par lesquels une symétrie peut être brisée dans la nature, ce qui peut compliquer sa mise en évidence dans la pratique.

Histoire de la notion de symétrie en physique

Le statut de la notion de symétrie a beaucoup évolué. D'abord reconnue comme propriété des systèmes physiques, elle a ensuite été utilisée comme méthode théorique de génération de nouvelles solutions des équations qui gouvernent l'évolution de ces systèmes (d'où l'introduction du concept de groupe de Lie) et enfin depuis la deuxième moitié du XXe siècle la notion de symétrie prend une importance encore plus fondamentale puisque depuis cette époque, une théorie quantique est toujours définie principalement par la symétrie qui la sous-tend.

Types de symétrie

Il y a trois types de distinctions des symétries qui apparaissent en physique :

  • La première, la distinction symétrie discrète/symétrie continue, renvoie à la structure mathématique du groupe utilisé pour décrire formellement la symétrie ;
  • La seconde, la distinction symétrie globale/symétrie locale, renvoie à la structure physique de la théorie en indiquant si la symétrie dont on parle peut être appliquée en chaque point de l'espace de façon indépendante ou non ;
  • La dernière, la distinction symétrie interne/symétrie d'espace-temps, renvoie à l'objet sur lequel la symétrie agit. S'il s'agit d'un objet physique, comme le champ électromagnétique par exemple, alors on parle de symétrie interne. Si la symétrie agit sur l'espace dans lequel les objets physiques baignent, alors on parle de symétrie d'espace-temps.

Symétrie discrète

Une symétrie est dite discrète lorsque l'ensemble des opérations de transformation autorisées constitue un ensemble fini. Par exemple les cristaux possèdent le plus souvent un groupe de symétrie discret appelé groupe cristallographique. D'autres symétries discrètes sont importantes en mécanique quantique: il s'agit des symétries de conjugaison de charge, de parité et d'inversion du temps qui permettent d'exprimer le théorème CPT affirmant que toute théorie quantique doit être invariante sous le produit de ces trois symétries.

Symétrie continue

De façon intuitive, une symétrie est dite continue lorsque les paramètres qui la déterminent varient de façon continue. C'est le cas de la symétrie de rotation qui est associée au groupe de rotations dans l'espace par exemple. Ce dernier est paramétrisé par les trois angles d'Euler qui varient en effet de façon continue.

La structure mathématique qui sous-tend la description des symétries continues est la théorie des groupes de Lie dont le groupe des rotations est un exemple.

Symétrie globale

Une symétrie est globale, on dit encore rigide, si on effectue la même transformation en tous les points du système pour aboutir à une configuration équivalente. Par exemple la loi universelle de la gravitation de Newton qui s'exerce entre deux corps est inchangée lorsqu'on effectue une rotation ou une translation identique sur les deux corps. On dit donc que la loi de la gravitation universelle est invariante sous les transformations globales de rotation et de translation.

Symétrie locale

Il arrive parfois qu'une théorie admette une symétrie bien plus grande et autorise à effectuer des transformations différentes en chaque point de l'espace. Lorsque ce phénomène se produit, on parle alors de symétrie locale.

Le premier cas connu de symétrie locale est celui de l'électromagnétisme. En effet les équations de Maxwell sont inchangées lorsqu'on change simultanément le potentiel électrique par la dérivée par rapport au temps d'une fonction arbitraire et qu'on change le potentiel vecteur par le gradient de cette même fonction. Si cette fonction varie selon le temps et l'espace alors en chaque point on effectue bien une transformation différente. Pourtant les équations restent inchangées et les conclusions physiques restent les mêmes. La fonction arbitraire servant à construire ces transformations paramétrise le groupe de symétrie locale de l'électromagnétisme qui est notée mathématiquement U(1)\,.

Dans le cas qu'on vient de voir, la symétrie utilisée agissait sur les champs de la théorie, il s'agissait donc d'une symétrie interne et dans ce cas on parle d'invariance de jauge. L'électromagnétisme est donc un exemple de théorie de jauge.

Si on a affaire à une symétrie d'espace-temps, comme le cas des translations par exemple, les choses sont un peu plus compliquées d'un point de vue technique. Si la théorie est telle que cette symétrie est en plus locale, elle possède alors l'invariance par reparamétrisation de l'espace-temps, on parle encore de covariance générale, et il s'agit alors de la relativité générale. La loi universelle de la gravitation est invariante sous les transformations globales de translation mais pas locales. La relativité générale peut donc être vue comme l'extension de la gravité newtonienne pour laquelle on a agrandi l'ensemble des transformations sous lesquelles elle est invariante.

Les deux cas que nous avons vus correspondaient à des groupes de symétrie discrets. Un cas plus exotique est celui de la construction d'orbifolds en théorie des cordes qui permet de construire des exemples de symétrie locale pour une symétrie discrète.

Page générée en 0.091 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise