Il convient a priori de distinguer les surfaces de Riemann, variétés analytiques complexes de dimension 1 et les variétés riemanniennes qui sont des surfaces, c'est-à-dire des variétés de dimension deux munies d'un tenseur métrique. Pourtant les deux notions sont très voisines.
Si Σ est une surface orientée munie d'une structure de variété riemannienne, il est possible de définir une structure presque complexe associée J sur Σ, qui est toujours intégrable, c'est-à-dire que Σ peut être naturellement vue comme une surface de Riemann. L'application J est définie sur chaque espace tangent en exigeant que J(v) soit de même norme que v et que (v,J(v)) soit orthogonal direct.
Réciproquement, si Σ est une surface de Riemann, il est possible de définir plusieurs métriques riemanniennes compatibles avec sa structure complexe. Parmi elles, il en existe une telle que la variété riemannienne obtenue soit complète et de courbure constante -1,0 ou 1. Une telle métrique est unique à un facteur près.