Suite (mathématiques) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Suites réelles et relation d'ordre

Suites monotones

Définition

On dit qu'une suite réelle est monotone lorsqu'elle est croissante ou décroissante. Par extension, une suite réelle est dite strictement monotone lorsqu'elle est strictement croissante ou strictement décroissante.

Propriétés

  • Suite croissante: On dira que la suite (u_n)_{n\in\mathbb N}\in \mathbb R^{\mathbb N} est croissante lorsque :
\forall n \in \mathbb N, u_{n+1} \ge u_{n}
  • Suite strictement croissante: On dira que la suite (u_n)_{n\in\mathbb N}\in \mathbb R^{\mathbb N} est strictement croissante lorsque :
\forall n \in \mathbb N, u_{n+1}>u_{n}
  • Suite décroissante:On dira que la suite (u_n)_{n\in\mathbb N}\in \mathbb R^{\mathbb N} est décroissante lorsque :
\forall n \in \mathbb N, u_{n+1}\le u_{n}
  • Suite strictement décroissante: On dira que la suite (u_n)_{n\in\mathbb N}\in \mathbb R^{\mathbb N} est strictement décroissante lorsque :
\forall n \in \mathbb N, u_{n+1}< u_{n}

Exemples

La suite définie \forall n \in \mathbb N par Un = 2n + 1 est strictement croissante sur \mathbb R .

Critères

Propriété 1 : critère de croissance

Propriété 2 : critère de décroissance

Limites de suites monotones

Suite monotone bornée

L'axiome de la borne supérieure, permet de démontrer facilement :

Si (u_n)_{n\in\mathbb N}\in \mathbb R^{\mathbb N} est croissante (resp. décroissante) et majorée par M (resp. minorée par m), alors (u_n)_{n \in \mathbb N} est convergente et \lim_{n \rightarrow + \infty}u_n \le M ( \mbox{resp.} \lim_{n \rightarrow + \infty}u_n \ge m ) .

De cette propriété, découle la remarque suivante :

Si :

  • (u_n)_{n\in\mathbb N}\in \mathbb R^{\mathbb N} est croissante
  • (v_n)_{n\in\mathbb N}\in \mathbb R^{\mathbb N} est décroissante
  • \exist N\in \mathbb N tel que : \forall n > N on a u_n \le v_n

alors :

(u) et (v) sont convergentes et \lim_{n\rightarrow+\infty}u_n\le\lim_{n\rightarrow+\infty}v_n

Suite monotone non bornée

Si (u_n)_{n\in\mathbb N}\in \mathbb R^{\mathbb N} est croissante (resp. décroissante) et non majorée (resp. non minorée ), alors (u_n)_{n \in \mathbb N} tend vers + \infty (resp. - \infty )

Suites adjacentes

Deux suites réelles (a_n)_{n \in \mathbb N } et (b_n)_{n \in \mathbb N } sont dites adjacentes lorsque :

  • l'une est croissante
  • l'autre est décroissante
  • la suite (a_n-b_n)_{n \in \mathbb N } converge vers 0

L'intérêt des suites adjacentes est qu'elles permettent d'une part de prouver l'existence d'une limite, d'autre part de fournir un encadrement de celle-ci aussi fin qu'on le souhaite. Ceci grâce aux deux propriétés suivantes:

  • Si deux suites réelles  (a_n)_{n \in \mathbb N } et (b_n)_{n \in \mathbb N } sont adjacentes, alors elles convergent et ont la même limite \ell .
  • De plus, en supposant  (a_n)_{n \in \mathbb N } croissante et (b_n)_{n \in \mathbb N } décroissante on a :
\forall n \in \mathbb N, a_n \leq a_{n+1} \leq \ell \leq b_{n+1} \leq  b_n

Limite de suite

Suite convergente

La notion de limite d'une suite est classique en topologie et les cas de convergence dans \R ou \mathbb C sont un cas particulier de cette définition. De façon simpliste, une suite a une certaine limite lorsque ses points se rapprochent de la valeur limite lorsque l'indice devient grand.

Définition générale :

Soit E un espace muni d'une topologie \mathcal O . On note \mathcal O(u) l'ensemble des ouverts contenant u.
On dira que la suite (u_n)_{n\in\mathbb N}\in E^{\mathbb N} est une suite convergente vers u^*\in E si

\forall O\in\mathcal O(u^*) , \exist N\in \mathbb N tel que \forall n > N, u_n \in O .

Cette définition se traduit plus simplement pour des suites convergente dans \R ou \mathbb C

Suite réelle convergente

On dira que la suite u est convergente vers u * lorsque pour tout \eta\in\mathbb R_+^* , il existe N\in\mathbb N tel que pour tout n\in\mathbb N , n > N:

|u_n-u^*|\le\eta

On dit alors que u tend vers u * , et on le note :

\lim_{n\rightarrow+\infty}u_n=u^*

Suite complexe convergente

La même définition s'applique en écrivant, à la place d'une valeur absolue, un module.

Limites infinies

Pour les suites réelles, on élargit le champ des limites possibles aux deux limites infinies  + \infty et -\infty avec les définitions suivantes

Définition 1 :

On dira que la suite u est divergente vers +\infty lorsque pour tout M\in\mathbb R_+^* , il existe N\in\mathbb N tel que pour tout n\in\mathbb N , n > N:

un > M

On dit alors que u tend vers +\infty , et on le note :

\lim_{n\rightarrow+\infty}u_n=+\infty

Définition 2 :

On dira que la suite u est divergente vers -\infty si, pour tout M\in\mathbb R_+^* , il existe N\in\mathbb N tel que pour tout n\in\mathbb N , n > N:

un < − M

On dit alors que u tend vers -\infty , et on le note :

\lim_{n\rightarrow+\infty}u_n=-\infty

Propriétés

Les propriétés sur les limites

vont dépendre de l'espace sur lequel on travaille et sont détaillées dans l'article : Limite de suite.

Page générée en 0.139 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise