Srinivasa Ramanujan - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Formules

Ramanujan a donné la formule suivante :

 1+\frac{1}{1\cdot 3} + \frac{1}{1\cdot 3\cdot 5} + \frac{1}{1\cdot 3\cdot 5\cdot 7} + \frac{1}{1\cdot 3\cdot 5\cdot 7\cdot 9} + \cdots + {{1\over 1 + {1\over 1 + {2\over 1 + {3\over 1 + {4\over 1 +                                     {5\over 1 + \cdots }}}}}}} = \sqrt{\frac{e\cdot\pi}{2}}

Cette formule relie parfaitement une série infinie et une fraction continue pour donner une relation entre les deux plus célèbres constantes des mathématiques.

Jonathan et Peter Borwein ont démontré une deuxième formule qu'il avait découverte en 1910 :

 \pi = \frac{9801}{2\sqrt{2} \displaystyle\sum^\infty_{n=0} \frac{(4n)!}{(n!)^4} \times \frac{[1103 + 26390n]}{(4 \times 99)^{4n}}}

Elle est très efficace puisqu'elle fournit 8 décimales à chaque itération.

Page générée en 0.064 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise