Soyouz - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Contexte

En 1957, alors que le programme Spoutnik qui va déclencher la course à l'espace, est en cours de développement , Sergueï Korolev étudie déjà les plans d'un lanceur qui permettrait de réaliser des missions plus ambitieuses notamment un vol habité autour de la Lune. En 1959 malgré le désintérêt des militaires soviétiques qui jouent à l'époque un rôle majeur dans le déroulement du programme spatial soviétique, il demande à un de ses collaborateurs de travailler sur l'avant-projet d'un vaisseau habité, baptisé Sever (Nord) capable d'effectuer le tour de la Lune. Fin 1959 il parvient à attirer l'attention du dirigeant soviétique de l'époque Nikita Khrouchtchev en lui faisant part des premiers travaux de la NASA sur un lanceur lourd qui deviendra la fusée Saturn  : il obtient ainsi le feu vert pour réaliser une étude de la fusée N-1. Celle-ci n'a toutefois pas de mission définie.

En avril 1962 une réunion qui se tient à Pitsounda dans la villégiature du premier secrétaire Khrouchtchev réunit les constructeurs astronautiques ainsi que les principaux décideurs soviétiques pour définir la stratégie spatiale soviétique. Au grand dépit de Korolev, son principal rival Vladimir Chelomei, qui a su circonvenir Khrouchtchev et, contrairement à Korolev, se concilier les militaires , obtient le feu vert pour son son projet de lanceur lourd UR500 rebaptisé par la suite Proton. Celui-ci doit, entre autres, être utilisé pour le lancement d'un vaisseau spatial habité chargé d'une mission circumlunaire.

Caractéristiques techniques

Vaisseau Soyouz TMA amarré au compartiment d'amarrage Pirs de la Station spatiale internationale.

Architecture

Le vaisseau Soyouz dans la version TMA utilisée actuellement est conçu pour transporter jusqu'à trois cosmonautes en orbite basse et s'amarrer à une station spatiale puis ramener ses occupants sur Terre. Il peut séjourner 180 jours en orbite à condition d'être amarré à la station spatiale ; le vaisseau peut naviguer de manière autonome durant 14 jours. L'architecture retenue vise à lui permettre de remplir sa mission avec la masse la plus faible possible. Pour y parvenir on a fait en sorte de réduire le plus possible la masse du véhicule qui revient sur Terre  : chaque gramme économisé réduit en proportion le poids du bouclier thermique, des parachutes et du carburant utilisé par les rétrofusées assurant la rentrée atmosphérique. Deux solutions ont été mises en œuvre pour remplir cet objectif.

  • Les systèmes et le volume habitable qui ne sont pas nécessaires pour le retour sur Terre sont rassemblés dans un module orbital, qui est largué avant le retour sur Terre.
  • La partie du vaisseau qui revient sur Terre, appelé module de descente, a une efficacité volumétrique optimale c'est-à-dire que le ratio volume habitable/surface de la coque est le plus grand possible. La forme la plus efficace est la sphère. Toutefois elle ne convient pas à une mission lunaire que Soyouz devait initialement pouvoir effectuer. En effet un vaisseau revenant de la Lune est animé d'une très grande vitesse et il est nécessaire que la capsule ait une certaine portance pour pouvoir infléchir sa trajectoire et réduire le nombre de g encaissé par l'équipage. Pour tenir compte de cet impératif, la forme choisie, qui résulte de longs calculs, est celle d'une cloche dont le sommet aurait la forme d'une demi-sphère, les flancs étant inclinés de 7 ° par rapport à la verticale. La base, qui est la partie avant du vaisseau durant la phase de rentrée et est donc couvert d'un bouclier thermique, a la forme d'une section d'une sphère à très grand rayon.

Le module orbital est à une de ses extrémités relié au module de descente par un tunnel qui peut être fermé et comporte à son autre extrémité l'écoutille et le dispositif d'amarrage à la station spatiale. Le module orbital est donc situé devant le module de descente. La propulsion principale, qui permet au vaisseau de changer d'orbite est situé à l'arrière du module de descente dans un troisième module de service qui est également largué avant la rentrée. Cette configuration a donné lieu à d'intenses débats au moment de sa conception. Certains préféraient que le module de descente soit situé à l'extrémité avant du lanceur pour pouvoir être arrachée plus facilement par la tour de sauvetage en cas de lancement défaillant. Mais cette architecture supposait de percer le bouclier thermique pour permettre le passage de l'équipage dans le module orbital, créant un point de faiblesse dans ce composant essentiel pour la sécurité des cosmonautes. Le point de vue des ingénieurs de Korolev finit par l'emporter. Le résultat de cette architecture est particulièrement efficace : le vaisseau Soyouz pèse 7 tonnes et fournit un volume habitable de 9 m3 alors que le vaisseau de commande Apollo qui dispose d'un volume de 6 m3 pèse 5 tonnes auquel il faudrait ajouter un module de service de 1,8 tonnes pour disposer des même capacités que le Soyouz.

Le vaisseau a une longueur de 10 mètres et un diamètre de 2,65 mètres. Il est recouvert d'un revêtement qui assure à la fois une isolation thermique et une protection contre les micrométéorites.

Module orbital (A): 1 Système d'amarrage et écoutille, 2 et 4 antenne Kours, 3 antenne transmission TV, 5 caméra, 6 écoutille
Module de descente (B) : 7 compartiment parachute, 8 périscope, 9 hublot, 11 bouclier thermique
Module de service (C) : 10 et 18 moteurs de contrôle d'orientation, 21 réservoir oxygène, 12 senseurs de Terre, 13 senseur solaire, 14 point d'attache des panneaux solaires, 16 antenne Kours, 15 capteur thermique, 17 propulsion principale, 20 réservoirs ergols, 19 antenne télécommunications

Le module de descente

Le siège moulé aux formes du cosmonaute pour l'aide à résister aux accélérations

Le module de descente (en russe : спускаемый аппарат ; Spuskaemyi apparat abrégé en SA), situé entre le module de service et le module orbital, est la seule partie du vaisseau qui revient au sol. Il a une hauteur extérieure de 2,24 mètres, un diamètre extérieur de 2,17 mètres et fournit à son équipage un volume habitable de 3,5 m3. En forme de cloche, on trouve à sa base le bouclier thermique, à son sommet une ouverture fermée par une écoutille et sur les flancs deux hublots. L'ouverture, qui a un diamètre de 70 cm et ne peut être obturée de manière étanche que du côté du module de descente, débouche à la suite d'un court tunnel dans l'espace habitable du module orbital ; après le retour sur Terre, elle permet à l'équipage d'évacuer le vaisseau. Le parachute principal et un parachute de secours sont logés dans un compartiment de forme lenticulaire relativement volumineux qui est situé dans la partie supérieure du module et est fermé par un opercule. Toute la surface du module est recouverte d'un revêtement ablatif pour le protéger de la chaleur durant la rentrée atmosphérique. La base du module, qui subit des températures de 1 800 °C, est protégé par un épais bouclier thermique ablatif qui est largué dans la phase finale de la rentrée.

Les trois occupants sont en position allongée sur des couchettes disposées en éventail jointives au niveau des pieds mais écartées au niveau des épaules. Les couchettes sont placées au fond du module non loin de la cloison derrière laquelle se situe le bouclier thermique. La tête est plus haute que la partie inférieure du corps pour permettre aux cosmonautes d'accéder aux panneaux d'instruments qui leur font ainsi face. Chaque couchette est adaptée aux mensurations de son occupant et l'enveloppe en particulier au niveau de sa tête tandis les genoux sont relevés ce qui doit l'aider à supporter l'accélération (cf photo ci-contre). Entre les couchettes et le bouclier thermique se trouvent une partie de l'électronique du bord. Au-dessus de la tête des astronautes, le compartiment des parachutes ainsi que des filets réservés au fret transporté viennent restreindre le peu d'espace vital disponible.

Le commandant du vaisseau est installé sur la couchette centrale, l'ingénieur de vol est à sa gauche tandis que le troisième occupant, qui ne joue aucun rôle dans la conduite du vaisseau depuis la version TMA, est installé à sa droite. Le commandant est le responsable de la mission : il communique avec le contrôle au sol et réalise les manœuvres de changement d'orbite, d'orientation et de rendez-vous. Il dispose à cet effet de deux manettes de chaque côté de sa couchette, l'une permet d'effectuer des manœuvres de translation dans les trois axes (accroitre la vitesse, rehausser l'altitude,...) tandis que l'autre agit sur l'orientation du vaisseau (roulis, tangage, lacet). Il ne dispose pas de hublot mais de l'image fournie pas un périscope dont l'écran lui fait face et dont la partie optique déborde largement de la coque du vaisseau pour lui permettre d'observer vers l'avant lors des manœuvres d'amarrage. L'optique peut être également orientée vers la Terre. L'ingénieur de vols surveille notamment les paramètres d'orientation du vaisseau et le système de support de vie du vaisseau.

Le commandant et l'ingénieur de vols ont face à eux un tableau de bord qui comprend depuis la version TMA deux écrans, un certain nombre de voyants fournissant des informations sur l'état du vaisseau et des boutons poussoirs utilisés pour lancer des commandes. Les écrans peuvent superposer des informations sur la navigation, les images des caméras extérieures , le résultat des commandes passées et donner des informations sur le statut du vaisseau.

Le module de descente dispose de 8 petits moteurs d'orientation de 10 kg de poussée qui sont utilisés durant la rentrée atmosphérique pour adopter une trajectoire limitant la décélération à environ 4 g. Ces moteurs sont alimentés par un mélange de peroxyde d'hydrogène. La durée de vie en orbite du Soyouz est limité à six mois principalement à cause de l'utilisation de ce carburant qui perd progressivement son oxygène et augmente la pression dans les réservoirs. Une batterie à la puissance limitée et un ordinateur de navigation et de pilotage secondaire sont utilisés uniquement durant la phase de rentrée lorsque le module de service qui contient l'avionique principale a été largué.

Le module orbital

Le module orbital

Le module orbital (en russe бытовой отсек, Bytovoi otsek c'est-à-dire compartiment de vie abrégé en BO) est situé à l'avant du vaisseau. Utilisé par l'équipage comme lieu de travail et de séjour une fois le vaisseau en orbite il est largué au retour avant la rentrée atmosphérique et est détruit. Il pèse selon les versions entre 1 et 1,4 tonnes (dans sa dernière version) et a une forme ovoïde avec des extrémités aplaties. Avec un diamètre maximal de 2,3 mètres et une longueur de 2,65 mètres (1,8 mètres dans l'habitacle) l'équipage dispose d'un volume de 5 m3. Le module comporte à sa partie supérieure un système d'amarrage sonde-cône avec en son centre une ouverture de 80 cm de diamètre fermée par une écoutille par lequel le vaisseau s'amarre à la station spatiale et à l'opposé une ouverture fermée par une écoutille qui le relie par un petit tunnel au module de descente. L'équipage utilise une troisième ouverture latérale dans la partie inférieure pour s'installer dans le vaisseau avant son lancement ; cette ouverture a également été utilisée pour effectuer la sortie extravéhiculaire de la mission conjointe Soyouz 4 / 5. Dans les premières versions de Soyouz, le module dispose de deux hublots latéraux : l'un est utilisé pour les observations de la Terre et l'autre pour celles de l'espace ; à partir de la version TM il existe un troisième hublot tourné vers l'avant utilisé pour les manœuvres d'amarrage à la station spatiale. A l'extérieur les antennes du systèmes Kours de rendez-vous automatique sont fixées à l'avant du module.

A l'intérieur du module se trouvent rangés la nourriture et la réserve d'eau du vaisseau (30 litres), un dispositif pour les toilettes, l'avionique pour le système d'amarrage. Le mobilier comporte des placards, une couchette et une table pliante. Des équipements spécifiques à la mission peuvent être ajoutés.

Le module de service

Propulseurs à l'arrière du module de service

Le module de service (en russe : приборно-агрегатный отсек ; Priborno-Agregatnyi Otsek c'est-à-dire Compartiment des instruments de bord abrégé en PAO) situé à l'arrière du vaisseau contient la propulsion principale et certains des moteurs de manœuvre avec leur réservoirs. Long de 2,26 mètres, il a un diamètre moyen de 2,26 m et un diamètre maximum de 2,72 mètres. Le module comporte comprend lui-même trois parties en allant de l'avant vers l'arrière :

  • la première section est constitué d'un treillis de poutrelles qui assure la liaison mécanique entre le module de descente et le module de service et sur lequel sont fixés une partie des moteurs de contrôles d'orientation ainsi que des bonbonnes d'oxygène.
  • Le compartiment de l'instrumentation est une partie pressurisée remplie de gaz inerte (azote) dans laquelle sont situés les ordinateurs principaux assurant la navigation, le guidage et le contrôle du vaisseau ainsi que les batteries principales.
  • La dernière section, la plus importante en taille, est non pressurisée et contient la propulsion principale ainsi que les réservoirs d'ergols. La propulsion principale utilisée pour les changements d'orbite et les corrections est constituée d'un moteur d'une poussée de 316 kg et qui peut être remis à feu quarante fois. Les manœuvres d'orientation sont réalisées par 28 petits moteurs divisés en 2 sous-ensembles comportant chacun 12 moteurs de 26,5 Newtons de poussée et 2 de 130 Newtons de poussée. Tous les moteurs utilisent le même mélange d'ergols liquides stockables hypergoliques : l'UDMH qui est combiné avec du peroxyde d'azote est stocké dans quatre réservoirs sphériques du module de service dont la contenance initialement de 500 kg a été porté dans les dernières versions à 880 kg capable de fournir un delta-V total de 390 m/s. Les réservoirs d'ergols sont mis sous pression par de l'hélium stocké à 300 bars dont les réservoirs sont situés dans le même module. Le module comporte également un radiateur de 8,5 m² utilisé par le système de contrôle thermique principal.

Deux panneaux solaires fixes d'une envergure totale de 10,60 m et d'une superficie de 10 m² sont déployés de part et d'autre du module de service une fois celui-ci en orbite. Ils fournissent en moyenne 0,6 kW avec une tension de 27 Volts.

La tour de sauvetage

Tour de sauvetage

La tour de sauvetage, qui surmonte le vaisseau Soyouz, comporte un unique propulseur à poudre de 676 tonnes de poussée comportant plusieurs tuyères qui peut être déclenché dès qu'il est armé soit environ 20 minutes avant le décollage jusqu'à 160 secondes après le décollage après quoi elle est larguée. Lorsque l'éjection est déclenchée, quatre panneaux canard se déploient le long du vaisseau pour stabiliser la trajectoire du vaisseau.

Le système de guidage, pilotage et navigation embarqué

Les manettes de vol, l'écran du périscope et une partie du tableau de bord
Gros plan sur les capteurs et moteurs de contrôle d'attitude du module de service

Comme tous les vaisseaux spatiaux, Soyouz embarque un système de guidage, pilotage et navigation embarqué. Il en existe en fait deux : le système principal, logé dans le module de service, sert durant pratiquement toute la mission tandis que le système secondaire, logé dans le module de descente et aux capacités limitées, est utilisé durant la phase de retour après le largage du module de service. Le système regroupe de manière traditionnelle trois sous-ensembles fonctionnels  :

  • Le système de navigation permet à l'équipage de connaitre la position du vaisseau, son vecteur de déplacement (vitesse de déplacement dans les trois dimensions) et les mouvements de rotation dont il est animé (selon les 3 axes).
  • Le système de guidage permet de calculer la trajectoire vers une position ou une orientation cible et de déterminer les manœuvres à effectuer (changements de vitesse linéaire et de rotation, axes de la poussée, moment et durée) pour y parvenir
  • Le système de contrôle agit sur le propulseur principal et les moteurs d'orientation pour appliquer les instructions fournies par le système de guidage.

Le contrôle d'attitude

Soyouz dispose d'un système de contrôle d'attitude qui maintient son orientation dans l'espace pour :

  • optimiser l'incidence du Soleil sur ses panneaux solaires
  • effectuer les manœuvres en orbite pour rejoindre un autre vaisseau (station spatiale) ou au contraire se placer sur la bonne trajectoire de rentrée atmosphérique car les moteurs ne sont pas montés sur cardan et leur poussée est orientée en faisant pivoter le vaisseau tout entier.

Pour déterminer son orientation Soyouz utilise plusieurs capteurs. Deux capteurs d'horizon infrarouge tournés vers la Terre utilisent l'horizon terrestre pour mesurer l'angle entre la verticale locale (du vaisseau) et la droite le joignant avec le centre de la Terre. Un capteur solaire procède de même avec le Soleil. Trois capteurs électroniques ioniques mesurent l'angle entre l'axe longitudinal du vaisseau et son vecteur de déplacement. Les informations fournies par tous ces capteurs sont renvoyées sur le tableau de bord. Par ailleurs deux gyromètres à deux degrés de liberté détectent les écarts angulaires en roulis et lacet par rapport à des valeurs choisies par l'équipage pour servir de référence. Enfin trois gyromètres sont chargés de mesurer les variations de vitesse angulaire sur les trois axes. Une alarme apparait sur le tableau de bord si l'écart dépasse 8 ° pour le premier ensemble de gyromètres et 6 ° sur une période de temps fixée pour le second ensemble.

Le vaisseau peut adopter trois modes d'orientation en fonction des phases de son vol :

  • Dans le mode privilégiant la puissance électrique, le vaisseau utilise le capteur solaire pour maintenir une orientation optimale par rapport à la direction du Soleil (incidence proche de la perpendiculaire du Soleil sur les panneaux solaires).
  • Dans le mode inertiel, le vaisseau maintient son orientation en conformité avec des instructions fournies par l'équipage qui sont entrées notamment en réinitialisant les gyromètres. Les déviations, détectées grâce aux gyromètres et éventuellement aux autres capteurs d'orientation, déclenchent des alertes sur le tableau de bord.
  • Le mode orbital maintient l'axe du vaisseau parallèle à l'axe de déplacement. Son contrôle s'appuie sur les capteurs d'horizon et les capteurs ioniques. Des écarts d'orientation de 1 à 2 ° et des dérives de vitesse angulaire de 0,07 °/s sont acceptés par le système de contrôle d'attitude.

Pour initialiser la position du vaisseau, le commandant du vaisseau peut utiliser l'écran du périscope (Vzor) qui lui permet d'aligner le vaisseau sur l'horizon. C'est une technique qui a été également utilisée par le passé lorsque tous les autres systèmes d'alignement étaient en panne avant la mise en feu des rétrofusées pour le retour sur Terre. L'orientation du vaisseau est réalisée en faisant fonctionner par de brèves impulsions des petits moteurs dédiés au contrôle de l'attitude (26,5 N) ou au contrôle de l'attitude et aux corrections d'orbite (130 N). Ces moteurs sont répartis à la jointure du module de service et du module de descente ainsi qu'à l'arrière du module de service. Le commandant peut effectuer les corrections manuellement en utilisant deux commandes situées de part et d'autre de sa couchette : la commande de gauche permet d'effectuer des mouvements de translation tandis que la manette de droite permet d'effectuer des rotations sur les trois axes par incrément de 0,5 ou 3 °.

Les télécommunications

Le vaisseau Soyouz comporte cinq systèmes de télécommunications distincts. Le système de télécommunications radio Rassvetest un système VHF à deux voies qui est utilisé par les cosmonautes pour communiquer avec le contrôle au sol, la station spatiale et entre eux. Il permet également d'enregistrer les télécommunications et de les réécouter. Le système de télémétrie embarqué (SBI) collecte les principales données de fonctionnement du vaisseau et de son équipage, les stocke et les transmet automatiquement au sol sans intervention de l'équipage. Le système Kvant-V fournit une liaison radio à deux voies qui permet entre autres le contrôle à distance du vaisseau durant les phases actives du vol orbital, la transmission des vidéos et des signaux du système de poursuite. Le système Klyost-M gère les transmissions des vidéos filmées par la caméra située près du port d'amarrage et dans le module descente. Le système de poursuite radio (RKO) répond aux signaux émis par les stations de poursuite au sol pour calculer la position et la trajectoire du vaisseau.

Le système de support de vie et la régulation thermique

La régulation thermique est assurée à la fois par un système passif et actif. Le système actif est constitué d'un circuit régulant la température et l'humidité des modules orbital et de descente et d'un deuxième circuit chargé d'évacuer la chaleur produite par l'électronique du bord dans le module de service. Les deux circuits aboutissent dans le module de service où la chaleur est évacuée par des radiateurs tapissant la paroi extérieure. Des ventilateurs brassent l'air dans les compartiments pressurisés. Les modules sont recouverts de plusieurs couches de matériau isolant pour limiter les échanges thermiques entre le vaisseau et l'espace.

La température à l'intérieur du module Soyouz est maintenue à 20 °C3 °C), la pression dans la cabine dans une fourchette de 710 à 850 mm et l'humidité relative à 40-55%. L'atmosphère de la cabine est composé d'un mélange d'azote et d'oxygène dans des proportions similaires à celles rencontrées au sol contrairement aux vaisseaux spatiaux américains des années 1960-1970 qui pour économiser le poids utilisent une atmosphère d'oxygène pur. Le dioxyde de carbone est absorbé par des cartouches d'hydroxyde de lithium tandis que de l'oxygène est régulièrement libéré dans l'atmosphère : sa composition est surveillée de manière automatique et ces informations ainsi que des alarmes sont affichées sur le tableau de bord du module de descente. Des filtres absorbent et retiennent poussières et odeurs. La pression est maintenu à l'aide d'une bouteille qui contient 4,5 kg d'air comprimé et qui est également utilisée pour égaliser la pression des parties habitables après l'amarrage à la station. Cette réserve d'air peut être également employée en cas de dépressurisation accidentelle comme celle qui s'est produit au cours du vol de Soyouz 11.

Page générée en 0.201 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise