Soleil - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Présentation générale

Le Soleil tel que vu dans l'ultraviolet « lointain » (UVC)
(image en « fausses couleurs »).
→ La chromosphère et les protubérances sont les sources essentielles, bien plus chaudes que « la surface » (la photosphère) !

Le Soleil est une étoile naine jaune qui se compose de 74 % d’hydrogène, de 24 % d’hélium et d’une fraction d’éléments plus lourds. Le Soleil est de type spectral G2–V. « G2 » signifie qu’il est plus chaud (5 770 kelvins en surface environ) et plus brillant que la moyenne, avec une couleur jaune tirant sur le blanc. Son spectre renferme des bandes de métaux ionisés et neutres, ainsi que de faibles bandes d’hydrogène. Le suffixe « V » (ou « classe de luminosité ») indique qu’il évolue actuellement, comme la majorité des étoiles, sur la séquence principale du diagramme de Hertzsprung-Russell : il tire son énergie de réactions de fusion nucléaire qui transforment, dans son noyau, l’hydrogène en hélium, et se trouve dans un état d’équilibre hydrostatique, ne subissant ni contraction, ni dilatation continuelles.

Il existe dans notre galaxie plus de 100 millions d’étoiles de type spectral identique, ce qui fait du Soleil une étoile assez ordinaire, bien qu’il soit en fait plus brillant que 85 % des étoiles de la Galaxie, qui sont en majorité des naines rouges.

Le Soleil gravite autour du centre de la Voie lactée dont il est distant d’environ 25 à 28 000 années-lumière. Sa période de révolution galactique est d’environ 220 millions d’années, et sa vitesse de 217 km⋅s-1, équivalente à une année-lumière tous les 1400 ans (environ), et une unité astronomique tous les 8 jours.

Dans cette révolution galactique, le Soleil, comme les autres étoiles du disque, a un mouvement oscillant autour du plan galactique : l’orbite galactique solaire présente des ondulations sinusoïdales perpendiculaires à son plan de révolution. Le Soleil traverserait ce plan tous les 30 millions d’années environ, d’un côté puis de l’autre — sens Nord-Sud galactique, puis inversement — et s’en éloignerait au maximum de 230 années-lumière environ, tout en restant dans le disque galactique. La masse du disque galactique attire les étoiles qui auraient un plan de révolution différent de celui du disque galactique.

Le Soleil tourne également sur lui-même, avec une période de 27 jours terrestres environ. En réalité, n’étant pas un objet solide, il subit une rotation différentielle : il tourne plus rapidement à l’équateur (25 jours) qu’aux pôles (35 jours). Le Soleil est également en rotation autour du barycentre du système solaire, ce dernier se situant à un peu plus d'un rayon solaire du centre de l'étoile (hors de sa surface), en raison de la masse de Jupiter (environ un millième de la masse solaire).

L’activité solaire

Le champ magnétique solaire

Vue d’artiste du champ magnétique solaire.

Le Soleil est une étoile magnétiquement active. Toute la matière solaire se trouvant sous forme de gaz et de plasma en raison des températures extrêmement élevées, le Soleil pivote plus rapidement à l’équateur (25 jours environ pour un tour) qu’aux pôles (35 jours pour un tour). Cette rotation différentielle des latitudes solaires donne au champ magnétique solaire une forme de spirale en perpétuelle rotation, les lignes de champ se trouvant emmêlées les unes aux autres au cours du temps. Cet enchevêtrement serait au moins en partie responsable du cycle solaire, phénomène périodique s’étalant sur 11,2 années en moyenne avec une alternance de minima et de maxima tous les onze semestres environ. Au terme d’un cycle de l’activité solaire, la polarité du champ magnétique s’est inversée par rapport à la fin du précédent : le cycle magnétique solaire a donc une période double (environ 22 ans) de celle du cycle d’activité. Les manifestations les plus spectaculaires en période d’intense activité magnétique sont l’apparition de taches solaires et de protubérances.

Les taches solaires

Le champ magnétique au niveau d’un groupe de taches froides de la photosphère solaire (intensité exprimée en Gauss).
Les niveaux de couleur décrivent la composante du champ magnétique le long de la ligne de visée. Les traits blancs illustrent la composante du champ perpendiculaire à la ligne de visée.
Image obtenue à partir d’observations du télescope solaire THEMIS et traitée par BASS 2000.

Bien que tous les détails sur la genèse des taches solaires ne soient pas encore élucidés, il a été démontré (par l'observation de l'effet Zeeman) qu’elles sont la résultante d’une intense activité magnétique au sein de la zone de convection. Le champ magnétique, qui en est issu, freine la convection et limite l’apport thermique en surface à la photosphère, le plasma de la surface se refroidit et se contracte.
→ Les taches solaires sont des dépressions à la surface solaire.

Elles sont ainsi moins chaudes de 1500 à 2000 kelvins que les régions voisines, ce qui suffit à expliquer pourquoi elles nous apparaissent, en contraste, bien plus sombres que le reste de la photosphère. Cependant si elles étaient isolées du reste de la photosphère, les taches solaires, où règne malgré tout une température proche des 4 000 kelvins, nous sembleraient 10 fois plus brillantes que la pleine lune, soit davantage qu’un arc électrique. La sonde spatiale SoHO a permis de démontrer que les taches solaires répondent à un mécanisme proche de celui des cyclones sur Terre. On distingue deux parties au sein de la tache solaire : la zone d’ombre centrale (environ 4 000 kelvins) et la zone de pénombre périphérique (environ 4 700 kelvins). Le diamètre des taches solaires les plus petites est habituellement plus de deux fois supérieur à celui de la Terre. En période d’activité, il est parfois possible de les observer à l’œil nu sur le Soleil couchant, avec une protection oculaire adaptée.

La surveillance des taches solaires est un excellent moyen pour contrôler l’activité solaire et prédire ses répercussions terrestres. Une tache solaire a une durée de vie moyenne de deux semaines. L’astronome allemand Heinrich Schwabe, au XIXe siècle, fut le premier à tenir une cartographie méthodique des taches solaires, ce qui lui permit d’évaluer leur périodicité. Les études ultérieures ont fixé leur période à 11,2 années, chaque demi-période étant alternativement caractérisée par un maximum d’activité (où les taches se multiplient) et un minimum d’activité. Le dernier maximum d’activité a été enregistré en 2001, avec un groupe de taches particulièrement marqué (image). Le prochain minimum d’activité est prévu pour le premier semestre de 2007.

Les éruptions solaires

Effets terrestres de l’activité solaire

Les aurores polaires sont une manifestation spectaculaire de l’activité solaire.

Les effets terrestres de l’activité solaire sont multiples, le plus spectaculaire est le phénomène des aurores polaires (également appelée aurore boréale dans l'hémisphère Nord et aurore australe dans l'hémisphère Sud).

La Terre possède une magnétosphère qui la protège des vents solaires, mais lorsque ceux-ci sont plus intenses, ils déforment la magnétosphère et des particules solaires ionisées la traversent en suivant les lignes de champs. Ces particules excitent ou ionisent les particules de la haute atmosphère. Le résultat de ces réactions est la création de nuages ionisés qui reflètent les ondes dont la lumière, ce qui provoque la formation des aurores polaires.

Les vents solaires peuvent également perturber les moyens de communication et de navigation utilisant des satellites, en effet, les satellites à basse altitude peuvent être endommagés par l’ionisation de l’ionosphère.

Page générée en 0.301 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise