Sélection de parentèle - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

L'équation d'Hamilton

  1. Avant Hamilton, la valeur (adéquation ou fitness) sélective d'un individu était strictement équivalente à son taux de reproduction. Selon Hamilton, la valeur sélective d'un individu n'est pas seulement proportionnel à son succès personnel en matière de reproduction mais également à celui de ses tiers apparentés (génétiquement proches). La somme de la valeur sélective et de la valeur sélective indirecte est baptisé valeur sélective globale (inclusive fitness) par Hamilton.
  2. Un comportement sera qualifié d'altruiste envers un tiers s'il permet l'augmentation de la valeur sélective propre de ce dernier. Par conséquent, d'après le postulat (1), un comportement altruiste envers un tiers apparenté permet d'augmenter la valeur sélective globale.

À partir de ces postulats, Hamilton déduit l'équation suivante :

          Fx = Rx + dRy \cdot Gxy        

avec :

  • Fx : la valeur sélective globale de l'individu x.
  • Rx: la valeur sélective propre de l'individu x.
  • dRy: l'effet de l'altruisme de x envers y sur la valeur sélective propre de y.
  • Gxy: le coefficient de proximité génétique entre x et y.

Nous remarquerons que lorsque dRy = 0 nous obtenons la théorie darwinienne classique Fx = Rx ; soit que la valeur sélective globale est strictement égale à la valeur sélective propre, elle-même strictement équivalente au taux de reproduction (taux de reproduction différentiel dans le cas de la valeur sélective d'une mutation).

Il découle de cette équation que la sélection naturelle d'une mutation prédisposant à l'altruisme est favorisée (Fx > 0) si le coût de l'altruisme (perte de valeur sélective propre) est inférieur au gain que procure celle-ci via la valeur sélective indirecte. Cette contrainte est baptisée règle d'Hamilton et est formalisée par l'inéquation suivante :

          Cx < dRy \cdot Gxy       

avec :

  • Cx : la perte de valeur sélective propre de l'individu x causée par la mutation.

Il est possible de dégager les cas de figure favorisant la sélection d'une mutation prédisposant à l'altruisme :

Cx \cong 0

Si le coût de la mutation est extrêmement faible, la mutation sera sélectionnée dès qu'elle favorise le moindrement un apparenté, même très éloigné génétiquement.

Gx \gg 0

Si la proximité génétique est très grande, la mutation sera sélectionnée malgré un coût élevé et/ou un faible effet de l'altruisme. Le coefficient de parenté maximum étant 1, le cas le plus favorable est le clone (jumeau identique). Les organismes multicellulaires sont des sociétés cellulaires de clones.

dRy\gg 0

Si la mutation possède un effet altruiste très élevé, la mutation sera sélectionnée malgré un coût élevé et/ou un faible coefficient de parenté.

À la limite, une mutation pourrait conduire à la stérilisation des individus au profit d'une augmentation maximale de l'effet altruiste. Il serait également possible d'envisager l'apparition d'un comportement de sacrifice permettant un effet altruiste très grand.

N.B. Nous remarquerons que l'apparition d'une mutation prédisposant à l'altruisme implique, en général, la coexistence d'un mécanisme de reconnaissance de la proximité génétique (parentèle) entre les individus. En effet, il est implicitement contenu dans l'équation que l'effet (dRx) associé au coût (Cx) est réalisé par un comportement de x envers y. Pour un coût fixe, si le comportement était réalisé envers un individu possédant une distance génétique trop grande, celui-ci ne serait pas rentable.

Groupe, individu et ADN

L'équation d'Hamilton induit un changement de perspective important. Il est maintenant impossible de conserver l'interprétation darwinienne de la valeur sélective. En effet, dans le cas de la stérilisation des individus comme ce qui se produit avec les hyménoptères sociaux, le taux de reproduction des porteurs d'une mutation de stérilisation est nul, ce qui entraine une contradiction. Par conséquent, il faut absolument reformuler la valeur sélective qui ne peut plus être le taux de reproduction de son porteur via la sexualité directe. Hamilton, pour résoudre le problème, introduit donc le concept de valeur sélective globale comme étant le taux de reproduction du porteur de la mutation par sexualité directe et indirecte via les apparentés.

Il serait également possible de considérer que la valeur sélective est simplement le taux de reproduction de la mutation elle-même, indépendamment du mécanisme utilisé pour réaliser la reproduction. Nous remarquerons que le taux de reproduction du porteur d'une mutation, par sexualité directe ou indirecte, est directement proportionnel au taux de reproduction de son ADN et de sa biomasse. La reproduction globale des individus, de la biomasse ou de l'ADN sont donc simplement trois façons distinctes d'interpréter le même phénomène naturel qu'est la reproduction du vivant. Par contre, du point de vue moléculaire, c'est bel et bien l'information contenue dans l'ADN qui a traversée les âges et non les individus ou leur masse.

Mais le plus remarquable est l'absence de la notion de groupe dans cette théorie. Le groupe émerge par l'application de comportements interindividuels eux-mêmes le résultat de la reproduction aveugle de mutations. La notion de sélection naturelle par « survie du groupe » popularisée par les premiers éthologues, en particulier Konrad Lorenz, était désormais tombée en disgrâce ; sa seule mention dans les publications spécialisées discréditait systématiquement leurs auteurs.

La reformulation de la théorie par Hamilton assisté de George Price au début des années 1970 allait donner la base théorique d'une lente réhabilitation de la sélection de groupe. Il est maintenant admis que la pression de sélection se réalise à tous les niveaux d'organisation du vivant, des cellules de l'organisme pluricellulaire (darwinisme cellulaire) aux écosystèmes, en passant pas les individus et les groupes.

Le paradoxe dégagé par l'analyse de Price est que l'altruisme n'évolue à l'intérieur d'un groupe que si celui-ci est en compétition avec d'autres groupes (sélection entre groupes) et ceci même s'il est composé exclusivement de parents. Si l'équation d'Hamilton continue de prédire dans quelles situations un comportement altruiste est sélectionné dans une population, elle n'est plus une alternative à la sélection de groupe qui, au contraire, lui est indispensable.

Une théorie, plusieurs modèles

Le modèle original d'Hamilton

Ce modèle est celui proposé par Hamilton pour expliquer l'apparition de l'eusocialité chez les hyménoptères. Dans la nature, l'eusocialité ne se retrouve que chez les insectes sociaux, elle est caractérisée par :

  • Superposition, dans une même société, de plusieurs générations d'adultes
  • Forte cohésion des membres (échange d'information et de matière entre les individus)
  • Division des rôles avec spécialisation des membres, certains pouvant être dédiés à la reproduction
  • Élevage coopératif de la progéniture

Sur les 30 ordres d'insectes, seulement deux possèdent des espèces eusociales, les isoptères et les hyménoptères. De plus, les hyménoptères ont réinventé de façon indépendante (évolution analogue) l'eusocialité à 12 reprises au cours de l'évolution.

Le modèle d'Hamilton explique cette propension à la socialisation chez les hyménoptères par leur mécanisme sexuel hors norme : l'haplodiploïdie. En effet, de façon exceptionnelle, les mâles sont haploïdes alors que les femelles sont diploïdes. Par conséquent, la méïose ne se réalise que dans les gamètes femelles (ovules). Cette forme de sexualité implique des coefficients de proximité génétique très particuliers :

Mère Père Sœur Frère
Fille 1/2 1/2 3/4 1/4
Fils 1/2 0 1/4 1/4

Le fait que deux sœurs possèdent une proximité génétique plus grande qu'avec leur propre descendance entraîne, selon l'équation d'Hamilton, que toute mutation favorisant la production de sœurs par une femelle, même au détriment de sa propre reproduction (fils ou fille), sera sélectionnée. Par conséquent, toute mutation altruiste envers la mère et l'empêchant de produire des fils sera sélectionnée. Nous remarquerons qu'une augmentation du ratio fille / fils produit par la reine ne diminue en rien sa valeur sélective globale mais augmente significativement celle de ses filles.

Ce modèle ne fut confirmé que treize ans plus tard par Trivers et Hare dans une publication de la prestigieuse revue Science (voir évolution par sexisme).

La manipulation parentale

Hamilton et Wilson croyaient initialement que les sociétés animales ne pouvaient apparaître que par des mutations altruistes. Pourtant, l'analyse mathématique de l'équation permet de prédire le contraire. Si Cx est négatif (le coût est en fait un gain), une mutation malveillante (dRx négatif) pourrait très bien être sélectionnée.

Cette simple constatation permet d'intégrer un modèle jugé initialement contradictoire, celui de la manipulation parentale de Richard Alexander et de Charles Michener qui l'on présenté, de façon indépendante, en 1974, pour expliquer respectivement l'évolution des sociétés de rat-taupes et des abeilles hypogées (ou halictes).

Dans ces sociétés, la femelle reproductrice unique domine et exclut de la reproduction les autres membres de la colonie par de fréquents comportements d'agression (malveillance de la reine envers les membres). Par contre, cette malveillance est largement compensée par les tâches de protection, recherche de nourriture et élevage de la progéniture effectuées par les membres au profit de la reproduction de la reine (altruisme des membres envers la reine).

Chez les rats-taupes il est démontré que les comportements d'agression sont inversement proportionnel au lien de parenté, ceci étant en parfait accord avec l'équation d'Hamilton.

L'évolution des sociétés animales peut donc utiliser des mutations altruistes, malveillantes ou encore un mélange des deux types.

Évolution par fratricide

La possibilité d'évolution sociale par apparition de comportements malveillants permet de revisiter la production de filles au détriment de fils par les reines d'hyménoptères sociaux. En effet, il est possible d'imaginer que la socialisation chez les hyménoptères ait évolué par fratricides de la part des sœurs. Il est en effet connu que les ouvrières se montrent souvent agressives envers les mâles et que les larves de mâles étaient les premières à être dévorées. De plus, en cas de situation critique, les ouvrières placent à l'abri en priorité les cocons femelles.

Évolution par sexisme

L'hypothèse radicale du fratricide n'est pas nécessaire, un investissement différentiel dans la production de femelles aux dépens des mâles pourrait très bien générer l'avantage sélectif global nécessaire. Trivers et Hare calculèrent à l'aide de la théorie d'Hamilton, que le ratio minimum d'altruisme (soins parentaux) des ouvrières envers les femelles versus les mâles devrait être de trois (3).

Ils étudièrent ce ratio chez dix-neuf espèces de fourmis monogynes (possédant une seule reine par colonie). Seize espèces sur les dix-neuf avaient un ratio supérieur à 2,50 ; les valeurs se distribuant de 1,57 à 8,88 avec une moyenne de 4,36. Ce résultat est encore plus convaincant en sachant que la méthode utilisée ne permettait pas de distinguer entre les mâles produits par la reine de ceux produits par les ouvrières. En effet, dans plusieurs colonies, les ouvrières produisent une proportion importante des mâles.

Ce résultat constitua une première démonstration expérimentale de la sélection de parentèle. Ces prédictions furent largement confirmées dix ans plus tard.

La méthode expérimentale est très intéressante. Pour déterminer le ratio d'altruisme des ouvrières envers les mâles et les femelles, ils comparèrent la proportion d'aliments fournie aux mâles à celle fournie aux femelles. Pour ce faire, il s'agit simplement de calculer le rapport de biomasse femelle à la biomasse mâle, le poids des individus étant proportionnel à la quantité de nourriture ingérée.

Cette méthode utilise donc, indirectement, comme unité de l'altruisme la masse (Kg) impliquant une valeur sélective exprimée en variation de la masse par unité de temps. Ceci permet de rappeler que l'évolution de la vie est une évolution de la biomasse, soit une certaine masse de vivant produisant une autre masse de vivant, plus grande ou plus petite en fonction de la valeur sélective.

Le succès sélectif peut, en écologie, se mesurer en biomasse. La biomasse des fourmis est environ quatre fois supérieure à celle de l'ensemble des vertébrés terrestres.

La sexualité tardive

La théorie d'Hamilton permet de prédire que chez les animaux à maturité sexuelle tardive, une mutation poussant les individus sexuellement immatures à rester avec leurs parents pour les aider à élever leurs frères et sœurs serait sélectionnée.

Ce modèle fut présenté par le chercheur indien Raghavendra Gadagkar pour expliquer le comportement des guêpes Ropalida.

Le même raisonnement s'applique aux espèces où les individus peuvent atteindre la sénescence. Des mutations poussant les individus sénescents à participer à l'élevage de leurs descendances seraient sélectionnées.

Nous noterons que ces modèles pourraient très bien s'appliquer à Homo sapiens.

L'instinct de troupeau

La formation de troupeaux de mammifères, de bancs de poissons ou de colonies d'oiseaux chez les proies s'explique facilement par la théorie darwinienne classique. En effet, il est démontré que la fuite d'un groupe trouble les mécanismes cognitifs des prédateurs qui ont plus de difficulté à attraper une proie que si elle était seule. Une mutation favorisant le regroupement serait alors sélectionnée par simple augmentation de la valeur sélective propre.

Par contre, un autre comportement fréquent chez les proies, celui du déclenchement de l'alarme est plus difficile à expliquer à l'aide de la théorie classique. Ce comportement augmente de beaucoup la survie des membres en multipliant les organes des sens aux aguets ; des centaines de yeux, oreilles et nez en action permettent de détecter plus efficacement les prédateurs et donc, de fuir plus rapidement. De plus, la proportion de temps qu'un membre doit sacrifier à la surveillance au détriment d'autres activités comme l'alimentation est significativement diminuée. Ce comportement ne pouvait être expliqué, dans la théorie classique, que par la sélection de groupe. En effet, celui qui donne le signal se met, en général, délibérément en danger en se faisant remarquer. En sachant que tous les apparentés du signaleur se trouvent dans le groupe, et que les individus tirent avantage d'un groupe nombreux, nous comprendrons aisément comment l'équation d'Hamilton résout le problème.

Nous remarquerons que ceci ne s'applique pas dans le cas où le signaleur possèderait un avantage compensatoire. Par exemple, il a été montré chez les suricates (Suricata suricata) que la sentinelle ne se faisait jamais capturer. Elle donne l'alarme, et est la première à rentrer au terrier (car la plus proche). Mais son alarme permet aux fourrageurs d'avoir plus de chance de survivre. Ici, le problème de la cause de l'altruisme n'existe pas, le signaleur est purement égoïste.

Un autre comportement de troupeau est la mobilisation du groupe en attaque collective contre un prédateur, autre comportement fréquent chez les proies, qui ne pouvait être expliqué dans la théorie classique que par la sélection de groupe. En effet, comment apparaît le premier mutant rentable ? Celui-ci doit affronter seul le prédateur avec une chance de survie pratiquement nulle. Ici encore, l'équation d'Hamilton permet de trouver une solution. Le sacrifice de l'individu X pour sauver un individu moyen Y (d'apparentement moyen) ne peut se réaliser que si Y possède un apparentement supérieur à 1 (ce qui est impossible) ou que le taux de reproduction propre de X soit nettement inférieur à celui de Y. Si la mutation se manifeste chez les individus trop vieux pour se reproduire, ce comportement n'affecte en rien leur taux de reproduction propre mais favorise les apparentés ; sous cette condition, l'équation d'Hamilton garantit la sélection de la mutation. Dans une société où les anciens se mobilisent, le risque d'être blessé ou tué en participant à la mobilisation diminue de façon importante ; le coût d'une mutation de mobilisation à tout âge devient alors rentable et elle peut maintenant être sélectionnée.

Page générée en 0.129 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise