On utilise un telluromètre et la méthode de Wenner : (on écrit tellurohmmètre (qui mesure la résistance de ce qui est tellurique)) On plante 4 piquets alignés et équidistants notés 1, 2, 3 et 4. Le courant de mesure est injecté entre les piquets 1 et 4 et la résistance est mesurée entre 2 et 3. Si la distance entre 2 piquets est égale à D, la résistivité du sol se calcule avec la formule :
La méthode 4 pointes ou méthode de Van der Pauw est utilisable pour mesurer la résistivité d’une couche mince. Il faut placer les 4 pointes près des bords de la couche à caractériser.
Soit un rectangle dont les côtés sont numérotés de 1 à 4 en partant du bord supérieur, et en comptant dans le sens des aiguilles d'une montre. On injecte le courant entre deux points du bord 1 et on mesure la tension entre les deux points du bord opposé (bord 3). Le rectangle pouvant ne pas être strictement un carré nous effectuons une deuxième mesure en injectant cette fois ci le courant entre les deux points du bord 4, et comme précédemment nous mesurons ensuite la tension entre les deux points du bord opposé (bord 2). Il suffit ensuite de calculer à l’aide de la loi d'Ohm, le rapport V/I pour chaque configuration de mesures.
Nous obtenons ainsi RAB,CD et RAC,BD.
La résistivité ρ est la solution de l'équation dite équation de Van der Pauw :
où e est l'épaisseur de la couche.
Une méthode de résolution consiste à calculer la résistance équivalente par la formule suivante :
ƒ étant le facteur de forme obtenu d’après la relation :
Nous calculons ensuite la résistivité avec :
Dans le cas d'un cristal parfait, on peut calculer la résistivité en fonction des paramètres fondamentaux.
Les cristaux covalents sont des isolants, la bande interdite est large. Avec l'élévation de température, des électrons peuvent être suffisamment excités pour franchir le gap. La conductivité suit donc une loi en
où
Dans les cristaux ioniques, la conduction se fait par migration de défauts. Le nombre et la mobilité des défauts suivent une loi d'Arrhénius, la conductivité suit donc une loi similaire, en
où
Dans le cas des cristaux métalliques, la résistivité augmente avec la température ; la conductivité augmente linéairement avec T. Cela est dû à l'interaction entre les électrons et les phonons.
Le premier modèle utilisé considère que les électrons se comportent comme un gaz, le libre parcours moyen des électrons étant déterminé par les chocs avec les ions (atomes du réseau sans leurs électrons libres, réseau appelé « gellium »). On trouve une résistivité valant
avec
Mais ce modèle ne prend pas en compte l'effet de la température ni des impuretés.
Selon la relation de Matthiessen, la conductivité comprend trois composantes :
avec
Le modèle de Drude prend en compte l'effet Joule, c'est-à-dire l'énergie cinétique que les électrons cèdent au réseau à chaque collision. Comme les autres modèles, c'est un modèle non quantique, qui permet également de prévoir la conductivité thermique, mais décrit mal ce qui se passe pour les températures très basses.
La résistivité d'un métal à une température proche de l'ambiante est en général donnée par :
avec
Métal | α (10-3K-1) |
---|---|
Argent | 3,85 |
Cuivre | 3,93 |
Aluminium | 4,03 |
Plomb | 4,2 |
Nickel | 5,37 |
Fer | 6,5 |
Tungstène | 45 |