Réseau électrique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Nombreuses lignes électriques aux abords d'un poste

Un réseau électrique est un ensemble d'infrastructures permettant d'acheminer l'énergie électrique des centres de production vers les consommateurs d'électricité.

Il est constitué de lignes électriques exploitées à différents niveaux de tension, connectées entre elles dans des postes électriques. Les postes électriques permettent de répartir l'électricité et de la faire passer d'une tension à l'autre grâce aux transformateurs.

Un réseau électrique doit aussi assurer la gestion dynamique de l'ensemble production - transport - consommation, mettant en œuvre des réglages ayant pour but d'assurer la stabilité de l'ensemble.

Historique

Un réseau électrique étant composé de machines de production et de consommation, ainsi que de structures (lignes, transformateurs) pour les relier, les réseaux électriques ne sont apparus que vers la fin XIXe siècle, lorsque chaque élément avait atteint une maturité technologique suffisante.

Les premiers réseaux à courant continu

Edison a été un pionnier dans la réalisation des premiers réseaux électriques en courant continu.

Lors de la première moitié du XIXe siècle, les inventeurs mettent au point de nombreux types de moteurs électriques à courant continu, mais leur utilisation de manière industrielle ne sera permise qu’après l’invention de la dynamo (génératrice de courant continu) par Zénobe Gramme en 1869, qui sera rapidement améliorée. À l'Exposition internationale d'Électricité de Paris de 1881, Marcel Deprez présente pour la première fois une installation de distribution d'énergie électrique alimentée par 2 dynamos. À l’automne 1882, les premiers réseaux électriques apparaissent simultanément à New York et Bellegarde, en France. Ils sont très locaux et utilisent le courant continu.

Thomas Edison a joué un rôle déterminant dans le développement de l’électricité : il fonde en 1878 l'Edison Electric Light Co (qui deviendra en 1892 General Electric), dépose le brevet de l’ampoule électrique en 1879, puis crée le réseau électrique de New York. Ce dernier, qui avait essentiellement pour but l’éclairage, se développe rapidement : d’une puissance de 1200 ampoules en 1882, il passe à 10 000 ampoules l’année suivante.

L'éclairage électrique était souvent créé lors d'expositions internationales.

Ce réseau, qui souffre de nombreuses pannes, est constitué de petites centrales électriques (30 kW) et d’un réseau de distribution à 110 V. Il est cependant très limité car l’acheminement de l’électricité n’est possible que sur quelques kilomètres.

À cette période les premières expérimentations de transport de l’énergie électrique se développent et sont menées notamment par Marcel Deprez, qui utilise du courant continu. Ce sont cependant des échecs relatifs car elles ne permettent pas le transport de puissances industrielles (Deprez réussi en 1882 à transporter 400 W sur 57 km de distance, mais avec un rendement global de seulement 30%). Les ingénieurs Lucien Gaulard et John Gibbs travaillent quant à eux sur le courant alternatif. Bien que le transformateur soit connu depuis 1837, ils mettent au point en 1884 un transformateur de forte puissance utilisant du courant alternatif triphasé, ce qui permet de changer facilement le niveau de tension. La même année ils démontrent l’intérêt du transformateur en mettant en service une ligne de 80 km de long alimenté en courant alternatif sous 2 000 V.

La victoire du courant alternatif triphasé

Tesla, un inventeur qui a conçu les premiers réseaux électriques en courant alternatifs

George Westinghouse, ingénieur et entrepreneur américain qui a créé sa propre compagnie d'électricité, est intéressé par la technologie du courant alternatif. En 1887, il achète les brevets du transformateur de Gaulard et embauche Nikola Tesla qui invente l’alternateur triphasé en 1891. Cette même année la première installation triphasée est mise en place aux environs de Francfort, avec une ligne de 175 km.

Aux États-Unis les réseaux en courant continu poursuivent leur développement, mais sont limités en taille : chaque centrale ne peut alimenter en électricité qu’une zone d’environ 5 km de diamètre, ce qui pose problème en dehors des villes. En parallèle se constituent de petits réseaux urbains en courant alternatif. Une opposition sévère fait rage à cette époque aux États-Unis entre Edison (défenseur du courant continu) et George Westinghouse avec Tesla (défenseur du courant alternatif). Edison insiste notamment sur le risque du courant alternatif en haute tension pour les êtres vivants, allant jusqu'à organiser des démonstrations publiques où il électrocute différents animaux, pour prouver la dangerosité du courant alternatif, et va jusqu’à financer la macabre invention de la chaise électrique. Après l'exécution de William Kemmler, Edison dira :« Il a été Westinghousé ».

La bataille décisive entre courant continu et alternatif se déroule autour d’un projet d’alimentation électrique de l’industrie de Buffalo par une centrale hydraulique de 75 MW située à Niagara Falls, à 32 km de distance. Edison proposait un projet en courant continu tandis que Tesla et Westinghouse proposaient un système en courant alternatif. Le contrat fut donné à Westinghouse. En 1896, la mise en service de la première ligne industrielle en triphasé fut un succès total et conduit à imposer universellement le courant alternatif triphasé comme moyen de transport de l’énergie électrique, mieux adapté au transport sur de longues distances.

L’interconnexion progressive des réseaux

A la fin du XIXe et au début du XXe siècle, les usages de l’électricité se multiplient, aussi bien au niveau domestique qu'industriel (notamment l’électrification des tramways, métros et chemins de fer). Dans chaque grande ville s'implantent des compagnies d'électricité. Ces dernières construisent des centrales électriques et de petits réseaux locaux, chacun utilisant des fréquences et des niveaux de tension différents. Les opérateurs se rendent compte tardivement de l’intérêt d’utiliser une fréquence unique (indispensable à l’interconnexion des réseaux), et l’on voit apparaître finalement 2 standards de fréquence : le 60 Hz sur la majorité du continent américain et le 50 Hz quasiment partout dans le reste du monde.

Dynamos alimentant les tramways de l'est parisien

Dans la première moitié du XXe siècle les réseaux urbains des pays industrialisés se sont agrandis afin d’électrifier les campagnes. En parallèle, ces réseaux se sont interconnectés entre eux au niveau régional afin d'engranger des économies d'échelle sur la taille des centrales de production, et de mieux valoriser des ressources énergétiques géographiquement localisées, comme la production hydraulique située dans les zones montagneuses, éloignée des grands centres de consommation. Au fur et à mesure de l’augmentation des puissances appelées et des distances des lignes d’interconnexion, la tension d’exploitation des lignes a également augmentée (1re ligne à 220 kV construite en 1923 aux États-Unis, celle à 380 kV en 1930 en Allemagne). L’apparition en 1937 du premier turbo-alternateur refroidi à l’hydrogène, d’une puissance de 100 MW, ouvre la voie des centrales électriques de forte puissance.

Une difficulté du développement des réseaux électriques est l’héritage du passé, car les infrastructures sont conçues pour durer plusieurs dizaines d’années. L’électrification des campagnes était aisée du fait de l’absence de tout réseau antérieur, permettant ainsi la mise en œuvre des standards du moment (en termes de tension et de fréquence). Au niveau urbain en revanche le problème était complexe car plusieurs réseaux non interconnectables coexistaient, conduisant à la multiplication des câbles. Les réseaux en courant continu ont ainsi subsisté très longtemps localement : jusque 1965 à Paris, et 2007 à New York !

Dans les années 1950, les compagnies européennes se coordonnent pour uniformiser les tensions des réseaux de transports à 400 kV, ce qui permet en 1967 la première interconnexion des réseaux français, allemands et suisse à Laufenbourg (Suisse).

La deuxième moitié du XXe siècle a connu en outre un renforcement des interconnexions intra-nationales et un développement significatif des interconnexions transnationales, dans le but principal de créer des capacités de secours mutuel entre opérateurs et d'améliorer globalement la stabilité des systèmes électriques, ainsi que, de façon plus ponctuelle, de créer des capacités d'échange d'énergie sur le long terme.

L'Europe, avec sa forte densité de population et un niveau élevé de développement économique et industriel, présente un réseau électrique à la fois dense et maillé. La mise en place d'interconnexions physiques dans ces conditions, a nécessité l'adoption de règles communes de sûreté entre les exploitants des divers systèmes, souvent nationaux pour prévenir les risques d'incident de grande ampleur. Aujourd'hui, c'est l'ENTSO-E, anciennement UCTE, qui effectue cette coordination en Europe.

Enfin plus récemment, dans le cadre de la construction du marché intérieur de l'électricité, la Commission européenne a choisi d'encourager le développement des capacités d'interconnexion transfrontalières, afin d'accroître les potentiels d'échange et l'interconnexion « commerciale » des marchés nationaux.


Pour le XXIe siècle, les réseaux sont confrontés à d'importants nouveaux défis :

  • accueillir simultanément, sans diminuer significativement la sûreté et la qualité de fonctionnement du réseau, des unités de production stables et commandables (électricité hydroélectrique ou issue de centrales thermiques) ainsi que sources moins prévisibles et souvent pas ou très peu commandables, comme l'énergie solaire ou l'énergie éolienne. Ces sources d'énergie font dans de nombreux pays développés l'objet de programmes de développement à un rythme soutenu.
  • faciliter l'interaction entre les consommateurs et le système électrique notamment pour adapter la demande aux capacité de production lorsque cela est nécessaire.
  • être plus économes en ressources non renouvelables qu'il s'agisse des matériaux pour leur construction comme des pertes qu'ils génèrent.
  • accueillir de nouveaux usages comme le véhicule électrique.

A ces sujets, les prospectivistes annoncent un réseau intelligent (Smart grid) plus souple et capable de mieux intégrer les sources d'énergies propres et sûres, mais diffuses et non continues telles que l'éolien et le solaire.

Historique des réseaux électriques en France

Le programme de construction des centrales nucléaires a dimensionné le réseau de transport d'électricité français

L’électrification du territoire français est effectuée au cours de la première moitié du XXe siècle : de 7 000 communes électrifiées en 1919, elles sont 36 528 à l’être en 1938. En parallèle, les réseaux proches s’interconnectent progressivement :

  • les réseaux de Paris le sont en 1907 à 12 kV
  • ceux des Pyrénées en 1923 à 150 kV
  • enfin la quasi-totalité du territoire français est interconnectée en 1938 à 220 kV, mais de grandes régions restent isolées.

Même au cours de la seconde guerre mondiale, le réseau de transport d’électricité croit de 30 % et à la Libération il est le plus dense au monde. En 1946, le cumul des lignes électriques de plus de 100 kV atteint 12 400 km, alors qu’il n’était que de 900 km en 1923.

Le 8 avril 1946 l’état nationalise les entreprises d’électricité, en rassemblant ces sociétés de production, distribution et transport en un établissement unique : EDF (cependant il subsistera un nombre non négligeable d'entreprises locales de distribution d'électricité et de gaz en France). Jusqu’en 1950, EDF devra organiser les coupures d’électricité, suite à la pénurie de centrales de production. La fréquence à 50 Hz se généralise en France (elle était par exemple de 25 Hz sur une grande partie du littoral méditerranéen). Le réseau à 225 kV se substitue aux réseaux à 110, 120 et 150 kV. En 1956, il est décidé de généraliser pour la distribution basse tension le couple de tension 220 / 380 V en remplacement de l'ancien couple 127 / 220 V (en 1986 la tension normalisée sera le couple 230 / 400 V). Le réseau 400 kV, décidé au niveau européen, se développe en France en coordination avec le plan électro-nucléaire, notamment à partir des années 1970-1980.

Page générée en 0.380 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise