Renormalisation - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Régularisation

Puisque la quantité ∞ - ∞ est indéfinie, pour rendre précise la notion de compensations des divergences, il faut d'abord les maîtriser mathématiquement, en utilisant la théorie des limites, selon un procédé dénommé régularisation.

Une modification pour l'essentiel arbitraire des intégrands de boucle, que l'on appelle régulateur, peut les conduire à tendre vers zéro pour des grandes valeurs de l'intégrand, plus vite que dans leur état naturel. Un régulateur peut dépendre d'une échelle de 4-moment caractéristique, que l'on appelle la coupure, ou sous son nom anglais cut-off. Tous les diagrammes ont le même régulateur, et les contre-termes dépendent aussi du régulateur. Quand on fait disparaître le régulateur, par exemple, en faisant tendre la coupure vers l'infini, on retrouve les intégrales originales, mais on a regroupé les termes et les contre-termes de telle sorte que l'on trouve des résultats finis. Si le nombre de contre-termes de la théorie est fini, on obtient un résultat indépendant de la méthode de régularisation. La théorie est dite renormalisable.

On utilise un grand nombre de types de régulateurs pour les calculs de théorie quantique des champs, qui ont tous des avantages et des inconvénients. Un des plus populaires dans les usages modernes est la régularisation dimensionnelle, inventée par Gerardus 't Hooft et Martinus Veltman. Elle maîtrise la divergence des intégrales en intégrant dans un espace-temps à un nombre de dimensions fictif fractionnel, inférieur à 4, nombre dont on prend en fin de calcul la limite de 4. Une autre est la régularisation de Pauli-Villars, qui ajoute à la théorie des particules fictives de très grande masse, en sorte que les intégrales de boucles impliquant les particules massives compensent les intégrales de boucles normales, à des valeurs des 4-moment bien plus grandes que la très grande masse des particules fictives, qui joue donc le rôle de cut-off.

Un autre schéma de régularisation est la régularisation sur réseau, introduite par Kenneth Wilson. Elle consiste à prétendre que notre espace-temps est constitué d'un réseau cubique à 4 dimensions, dont le pas est constant. L'inverse de ce pas est un cut-off naturel pour les composantes du 4-moment d'une particule se déplaçant sur le réseau. Après un calcul sur divers pas de réseau, le résultat physique est extrapolé à un pas de réseau nul, ce qui redonne notre espace-temps continu, sous certaines conditions de régularité du passage à la limite.

Il existe une méthode mathématiquement rigoureuse de pratiquer la renormalisation, la théorie des perturbations causale, où l'on évite les divergences UV dans les calculs dès le début, en ne faisant que des opérations mathématiquement bien définies dans le cadre de la théorie des distributions. L'inconvénient de cette méthode réside dans son aspect très technique, qui demande un haut degré de connaissances mathématiques.

Régularisation par la fonction zêta

Julian Schwinger a découvert une relation entre la régularisation de la fonction ζ et la renormalisation, en utilisant la relation asymptotique :

 I(n, \Lambda )= \int_{0}^{\Lambda }dp\,p^{n} \sim 1+2^n+3^n+...+ \Lambda^n = \zeta(-n)

quand le régulateur Λ → ∞. Sur cette base, il a envisagé d'utiliser les valeurs de ζ(-n) pour obtenir des résultats finis. Bien qu'il eût obtenu des résultats incohérents, une formule améliorée par Hartle, J. Garcia, E. Elizalde utilise :

 I(n, \Lambda) = \frac{n}{2}I(n-1, \Lambda) + \zeta(-n) - \sum_{r=1}^{\infty}\frac{B_{2r}}{(2r)!} a_{n,r}(n-2r+1) I(n-2r, \Lambda),

où les B sont les nombres de Bernoulli et

a_{n,r}= \frac{\Gamma(n+1)}{\Gamma(n-2r+2)}.

Donc tout I(m,Λ) peut être écrit comme une combinaison linéaire de ζ(-1), ζ(-3), ζ(-5), ... , ζ(-m).

Ou encore, en utilisant la formule d'Abel-Plana, on a pour toutes les intégrales divergentes :

 \zeta(-m, \beta )-\frac{\beta ^{m}}{2}-i\int_ 0 ^{\infty}dt \frac{ (it+\beta)^{m}-(-it+\beta)^{m}}{e^{2 \pi t}-1}=\int_0 ^{\infty} dp (p+\beta)^{m}

valable pour m > 0. Ici la fonction ζ est la fonction zêta d'Hurwitz et β est un nombre réel positif.

Une analogie géométrique serait, si on utilise la méthode des rectangles pour évaluer l'intégrale de cette manière :

 \int_{0}^{\infty}dx(\beta +x)^{m}\approx \sum_{n=0}^{\infty}h^{m+1} \zeta( \beta h^{-1} , -m)

En utilisant la régularisation ζ d'Hurwitz en conjonction avec la méthode des rectangles avec un pas h.

Page générée en 0.107 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise