Relation d'ordre - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Propriétés complémentaires

Compatibilité

Une relation d’ordre \mathbb{<} sur un ensemble E muni d’une loi de composition interne * est compatible avec cette loi si et seulement si :

\forall (x,y,z) \in E^3 , \quad  x \le y \Longrightarrow x * z \le y * z \;\wedge\; z * x \le z * y
  • La relation d'ordre \mathbb{<} sur l'ensemble des réels est compatible avec l'addition mais pas avec la multiplication.
  • La relation d'ordre \mathbb{<} sur l'ensemble des réels strictement positifs est compatible avec l'addition et la multiplication.
  • L’ensemble \mathbb{C} des nombres complexes n’est pas ordonnable par une relation d’ordre compatible avec les opérations d’addition et de multiplication.

Si un groupe est muni d'une relation d'ordre compatible avec sa loi interne, on l'appelle groupe ordonné.

Un groupe totalement ordonné vérifiant la propriété

\forall (x,y) \in (G_+)^2 , \quad  \exists n \in \mathbb N , \quad x \le n y

est dit archimédien.

Ensemble bien ordonné

Un ensemble ordonné est dit bien ordonné si tout sous-ensemble non vide de cet ensemble possède un plus petit élément.

Treillis

Un ensemble est appelé treillis s'il est ordonné et que tout couple d'éléments possède une borne supérieure et une borne inférieure.

Notions associées

Applications croissantes

Si (E, ≤E) et (F, ≤F) sont deux ensembles ordonnés, une application f de E dans F est dite croissante (ou parfois croissante au sens large) quand elle conserve l'ordre, décroissante (au sens large) quand elle inverse celui-ci, c'est-à-dire que :

f est croissante quand pour tous x et y de E,   xE yf(x) ≤F f(y).
f est décroissante quand pour tous x et y de E pour tous x et y de E,   xE yf(x) ≥F f(y).

Quand elle conserve l'ordre strict elle est strictement croissante : pour tous x et y de E,   x <E yf(x) <F f(y),

et strictement décroissante quand elle l'inverse : pour tous x et y de E,   x <E yf(x) >F f(y).

À noter qu'une application injective croissante est nécessairement strictement croissante.

Les morphismes d'ordres sont les applications croissantes.

Plus grand élément et élément maximal

Dans un ensemble ordonné E, il n'existe pas forcément de plus grand élément. Si E est fini, il contiendra (au moins) un élément maximal. Si E est un ensemble inductif infini, le lemme de Zorn garantit encore l'existence d'un élément maximal.

Relation d'ordre strict

On a vu qu'à une relation d'ordre « ≤ » sur un ensemble donné, on associait naturellement une relation « < », dite d’ordre strict, définie sur le même ensemble, et obtenue en restreignant celle-ci aux couples d'éléments distincts. Il est tout à fait possible d'axiomatiser directement la notion d'ordre strict. Cela peut même s'avérer plus naturel dans certains cas.

Une relation d'ordre strict est une relation binaire irréflexive, et transitive : soit E un ensemble et une relation binaire sur cet ensemble notée <, cette relation est une relation d'ordre strict si et seulement si pour tous x, y et z éléments de E :

  • non (x < x) (irréflexivité)
  • (x < y et y < z) ⇒ x < z (transitivité)

On déduit immédiatement de ces deux propriétés qu'une relation d'ordre strict est antisymétrique. À dire vrai une relation d'ordre strict est antisymétrique en un sens plus fort qu'une relation d'ordre large, c’est-à-dire que pour tous x et y de l'ensemble support E :

  • x < y ⇒ non (y < x) (antisymétrie « forte »)

Cependant pour une relation irréflexive, comme les ordres stricts, cette propriété est équivalente à la propriété d'antisymétrie définie pour les ordres larges. Il n'y a donc pas d'inconvénient à parler d'antisymétrie dans les deux cas.

De même qu'à une relation d'ordre (large) on associait une relation d'ordre strict, à une relation d'ordre strict, soit « < », on associe naturellement une relation d'ordre large, soit « ≤ », définie par :

xy si et seulement si x < y ou x = y.

Choisir l'une ou l'autre des axiomatisations n'a pas d'importance en soi. Dans les deux cas on a défini un ordre large et un ordre strict associés. En effet on vérifie facilement, en utilisant les propriétés de l'égalité, que :

  • La relation d'ordre strict associée à une relation d'ordre large (transitive, réflexive et antisymétrique) vérifie bien les axiomes d'ordre stricts (elle est transitive et irréflexive).
  • La relation d'ordre large associée à une relation d'ordre strict (transitive et irréflexive) vérifie bien les axiomes d'ordre large (elle est transitive, réflexive et antisymétrique).
  • Il y a bien symétrie : étant données une relation d'ordre strict « < », et une relation d'ordre large « ≤ », « < » est associée à « ≤ » si et seulement si « ≤ » est associée à « < ».

Pour un ordre strict, la totalité s'exprime ainsi :

x, yE ( x < y ou x = y ou y < x ).

et on dit alors que c'est une relation d'ordre strict total. Il n'y a pas de confusion possible avec le sens précédent de relation totale, car une relation d'ordre strict, qui est irréflexive, ne peut être totale au sens où l'est un ordre large.

Pour un ordre strict total, les trois possibilités — x < y, x = y et y < x — sont exclusives, et l'on parle parfois, à la suite de Cantor, de propriété de trichotomie.

Négation (ou complémentaire) d'une relation d'ordre

La négation d'une relation binaire R définie sur un ensemble A est la relation de graphe le complémentaire de celui de R dans A \times A . On la note \not\! R . Dit autrement, deux éléments sont en relation par \not\! R si et seulement s'ils ne le sont pas par R.

Dire qu'un ordre est total, c'est dire que sa négation est l'ordre strict inverse. C’est-à-dire qu'il y a équivalence pour un ordre \le\, entre :

  • \le\, est total ;
  • x \not\leq y \iff y < x

Par contre dès qu'il existe deux éléments distincts non comparables par un ordre, sa négation ne peut être un ordre (strict ou large), car elle n'est pas antisymétrique. La négation d'un ordre non total n'est donc jamais un ordre.

Par exemple, la négation de l'inclusion ⊄ sur l'ensemble des parties d'un ensemble d'au moins deux éléments n'est pas un ordre, car, si ab, on a toujours {a}≠{b} avec cependant {a}⊄{b} et {b}⊄{a}.

Préordre

Un préordre est une relation binaire réflexive et transitive.

On peut le considérer comme une relation d’ordre dans laquelle on autoriserait les cycles non triviaux (c’est-à-dire des cycles de plus d’un élément). Ajouter la condition d'anti-symétrie rend impossible la présence de ces cycles non triviaux.

Tout quotient d'un préordre par la relation d'équivalence associée est un ordre.

Page générée en 0.103 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise