Régression linéaire multiple - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

La méthode des moindres carrés ordinaires

Estimateur des moindres carrés ordinaires (EMCO)

Du modèle complet:

 y_i =a_0 + a_1 x_{i,1} + \cdots + a_p x_{i,p} +\epsilon_i \,

On va estimer les paramètres et obtiendra:

\hat{y_i} =\hat{a}_0 + \hat{a}_1 x_{i,1} + \cdots + \hat{a}_p {x}_{i,p}\,

Les résidus estimés sont la différence entre la valeur de y observée et estimée. Soit:

Définition —   \hat{\epsilon}_i \equiv y_i - \hat{y}_i \,

Le principe des moindres carrés consiste à rechercher les valeurs des paramètres qui minimisent la somme des carrés des résidus.

\min \sum_{i=1}^{n} \hat{\epsilon}_i^2 = \min_{\hat{a}_0, ., \hat{a}_p} \sum_{i=1}^{n} (y_i - \hat{a}_0 - \hat{a}_1 x_{i,1} - \cdots - \hat{a}_{p} x_{i,p})^2  .

Ce qui revient à rechercher les solutions de \frac{\partial (\sum \hat{\epsilon}_i^2)}{\partial \hat{a}_j} = 0\, . Nous avons j =p + 1 équations, dites équations normales, à résoudre.

La solution obtenue est l'estimateur des moindres carrés ordinaires, il s'écrit :

Théorème —   \hat a = (X'X)^{-1}X'Y \qquad \, est l'estimateur qui minimise la somme des carrés des résidus.

avec X' la transposée de X

Remarques:

  • Pourquoi minimiser la somme des carrés plutôt que la simple somme? Cela tient au fait que la moyenne de ces résidus sera 0, et donc que nous disposerons de résidus positifs et négatifs. Une simple somme les annulerait, ce qui n'est pas le cas avec les carrés.
  • si les x j sont centrés, X 'X correspond à la matrice de variance-covariance des variables exogènes ; s'ils sont centrés et réduits, X 'X correspond à la matrice de corrélation.

Interprétation géométrique, algébrique et statistique de l'estimateur MCO

  • L'estimateur MCO correspond à une projection orthogonale du vecteur Y sur l'espace formé par les vecteurs X.
  • L'estimateur MCO correspond à une matrice inverse généralisée du système Y = Xa pour mettre a en évidence. En effet, si on prémultiplie par l'inverse généraliseé (X'X) − 1X' on a: (X'X) − 1X'Y = (X'X) − 1X'Xa = a
  • L'estimateur MCO est identique à l'estimateur obtenu par le principe du maximum de vraisemblance.

Propriétés des estimateurs

Si les hypothèses initiales sont respectées, l'estimateur des MCO (Moindres Carrés Ordinaires) possède d'excellentes propriétés.

Propriétés en échantillons finis

Propriété — L'estimateur MCO est sans biais, c.-à-d.  \operatorname{E}(\hat a) = a , sous les hypothèses H1,H2, et H5

Cette propriété se base seulement sur les hypothèses d'espérance nulle des résidus. La présence d'autocorrélation ou d'hétéroscédasticité n'affecte pas ce résultat.

Propriété —  L'estimateur MCO est le meilleur estimateur linéaire sans biais, sous les hypothèses H1 à H5

C.-à.-d. qu'il n'existe pas d'estimateur linéaire sans biais de a qui ait une variance plus petite. Cette propriété en anglais est désignée par BLUE, pour best linear unbiased estimator. La preuve est donnée par le Théorème de Gauss-Markov.

Propriété — L'estimateur MCO est distribué selon une loi normale  \hat a \sim \mathcal{N}(0, \sigma^2_{\varepsilon}(X'X)^{-1}) sous les hypothèses H1,H2, et H6

Propriétés asymptotiques

Propriété — L'estimateur MCO est convergent en probabilité, c.-à-d.  \hat a \xrightarrow{p} a , sous les hypothèses H6, et H8

Propriété — L'estimateur MCO suit asymptotiquement une loi normale  \hat a \sim \mathcal{N}(0, \frac{\sigma^2_{\varepsilon}(Q)^{-1}}{n}) sous les hypothèses H1 à H5 et H8

Ce résultat est obtenu sans l'hypothèse de normalité des résidus (H6).


Page générée en 0.109 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise