Historiquement, les rayons X étaient connus pour faire briller certains cristaux (fluorescence), ioniser les gaz et impressionner les plaques photographiques.
Les principales propriétés des rayons X sont les suivantes :
Les rayons X sont des radiations ionisantes. Une exposition prolongée aux rayons X peut provoquer des brûlures (radiomes) mais aussi des cancers. Ces effets ont été réellement pris en compte assez tard. C'est ainsi que dans un ouvrage de 1954, on ne lisait aucune recommandation de sécurité, mais par contre :
ce qui semble indiquer que les auteurs ou leurs collaborateurs étaient soumis à cet effet occasionnellement.
Les personnels travaillant avec des rayons X doivent suivre une formation spécifique, être protégés et suivis médicalement (ces mesures peuvent être peu contraignantes si l'appareil est bien « étanche » aux rayons X)
Les rayons X sont invisibles à l'œil, mais ils impressionnent les pellicules photographiques. Si l'on place un film vierge protégé de la lumière (dans une chambre noire ou enveloppée dans un papier opaque), la figure révélée sur le film donne l'intensité des rayons X ayant frappé la pellicule à cet endroit. C'est ce qui a permis à Röntgen de découvrir ces rayons. Ce procédé est utilisé en radiographie médicale ainsi que dans certains diffractomètres (clichés de Laue, chambres de Debye-Scherrer). Il est aussi utilisé dans les systèmes de suivi des manipulateurs : ceux-ci doivent en permanence porter un badge, appelé « film dosimètre », enfermant une pellicule vierge ; ce badge est régulièrement changé et développé par les services de santé pour contrôler que le manipulateur n'a pas reçu de dose excessive de rayons X.
Comme tous les rayonnement ionisants, les rayons X sont détectés par les compteurs Geiger-Müller (ou compteur G-M). Si l'on diminue la tension de polarisation du compteur, on obtient un compteur dit « proportionnel » (encore appelé « compteur à gaz » ou « compteur à flux gazeux ») ; alors que le compteur G-M travaille à saturation, dans le compteur proportionnel, les impulsions électriques générées sont proportionnelles à l'énergie des photons X.
Les rayons X provoquent aussi de la fluorescence lumineuse sur certains matériaux, comme l'iodure de sodium NaI. Ce principe est utilisé avec les « compteurs à scintillation » (ou « scintillateurs ») : on place un photodétecteur après un cristal de NaI ; les intensités des impulsions électriques récoltées par le photomultiplicateur sont elles aussi proportionnelles aux énergies des photons.
De même qu'ils peuvent ioniser un gaz dans un compteur G-M ou proportionnel, les rayons X peuvent aussi ioniser les atomes d'un cristal semi-conducteur et donc générer des paires électron-trou de charges. Si l'on soumet un semi-conducteur à une haute tension de prépolarisation, l'arrivée d'un photon X va libérer une charge électrique proportionnelle à l'énergie du photon. Ce principe est utilisé dans les détecteurs dits « solides », notamment pour l'analyse dispersive en énergie (EDX ou EDS). Pour avoir une résolution correcte, limitée par l'énergie de seuil nécessaire à la création de charges, les détecteurs solides doivent être refroidis, soit avec une platine Peltier, soit à l'azote liquide. Les semi-conducteurs utilisés sont en général du silicium dopé au lithium Si(Li), ou bien du germanium dopé au lithium Ge(Li).
Notons au passage que la faible température n'a pas d'effet direct sur la valeur de l'énergie de seuil, mais sur le bruit de fond. Il est possible en revanche d'utiliser des supraconducteurs maintenus à très basse température afin de faire usage d'énergie de seuil vraiment petite. Par exemple l'énergie de seuil nécessaire à la création de charges « libres » dans le silicium est de l'ordre de 3 eV, alors que dans le tantale supraconducteur, disons au-dessous de 1 Kelvin, elle est de 1 meV, soit 1 000 fois plus faible. La diminution de la valeur de seuil a pour effet d'augmenter le nombre de charges créées lors de la déposition d'énergie, ce qui permet d'atteindre une meilleure résolution. Cette dernière est en effet limitée par les fluctuations statistiques du nombre de charge créées. L'amplitude de ces fluctuations peut s'estimer avec la Loi de Poisson. Des expériences récentes de détection d'un photon X à l'aide d'un calorimètre maintenu à très basse température (0,1 K) permettent d'obtenir une excellente résolution en énergie. Dans ce cas, l'énergie du photon absorbé permet de chauffer un absorbeur, la différence de température est mesurée à l'aide d'un thermomètre ultra sensible.
Afin de comparer les approches : le Si permet une précision de la mesure de l'ordre de 150 eV pour un photon de 6 000 eV. Un senseur au Ta permet d'approcher 20 eV, et un calorimètre maintenu à 0,1 K a récemment démontré une résolution d'environ 5 eV, soit un pouvoir de résolution de l'ordre de 0,1 %. Il est utile de mentionner que les méthodes de détection cryogéniques ne permettent pas encore de fabriquer des capteurs possédant un grand nombre d'éléments d'images (pixel), alors que les capteurs basés sur les semi-conducteurs offrent des « caméras » à rayons X avec plusieurs milliers d'éléments. De plus, les taux de comptage obtenus par les senseurs cryogéniques sont limités, 1 000 à 10 000 cps par pixel.
L'analyse des cristaux par diffraction de rayons X est aussi appelée radiocristallographie. Ceci permet soit de caractériser des cristaux et de connaître leur structure (on travaille alors en général avec des monocristaux), soit de reconnaître des cristaux déjà caractérisés (on travaille en général avec des poudres polycristallines).
Pour travailler avec un monocristal, on utilise l'appareil ci-contre :
Utilisé en géologie et en métallurgie, c'est aussi un outil de biophysique, très utilisé en biologie pour déterminer la structure des molécules du vivant, notamment en cristallogénèse (c'est l'art de fabriquer des monocristaux avec une molécule pure) ; dans ce cadre, un monocristal de la molécule est mis dans un faisceau de rayons X monochromatiques et la diffraction observée pour différentes position du cristal dans le faisceau de rayons X (manipulé par un goniomètre) permet de déterminer non seulement la structure du cristal, mais aussi et surtout la structure de la molécule. C'est notamment par radiocristallographie que Rosalind Franklin, puis James Watson, Francis Crick, Maurice Wilkins et leurs collaborateurs ont pu déterminer la structure hélicoïdale de l'ADN en 1953.