Radar météorologique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Radar aéroporté

Radar météorologique dans le nez d’un avion de recherche de la NASA

L’une des utilisations importantes pour la sécurité des passagers des avions est le radar météorologique aéroporté. Il permet au pilote de suivre les précipitations et le cisaillement des vents. En général on retrouve le radar dans le nez de l’avion, mais il peut également se retrouver sous l’appareil, sous l’une des ailes ou à la queue, selon la configuration ou les besoins.

Contrairement aux radars au sol, l’antenne d’un radar aéroporté doit être utilisée à des angles variables qui tiennent compte de l’attitude de l’appareil. En effet, ce dernier peut être en montée, en descente ou en virage, et un mécanisme gyroscopique compensateur doit être intégré pour que donner une image constante de l’environnement.

Un inconvénient majeur des radars météorologiques aéroportés est la proximité du sol au décollage et à l’atterrissage. Ce dernier qui donne des retours importants. La technique la plus utilisé par les pilotes est d’utiliser des angles de sondages élevés par rapport à l’horizon afin de diminuer la zone d’écho de sol dans l'affichage. Une fois en altitude, le pilote peut revenir à des angles plus bas, ou même négatifs, afin de suivre les précipitations. Les radars plus modernes utilisant les données Doppler permettent de filtrer encore mieux ces échos et en plus permettent de repérer les zones où le vent change de direction dans les orages. Contrairement aux radars au sol, les radars aéroportés ne balayent pas sur 360 degrés autour de l'appareil mais effectuent seulement un va-et-vient sur 180 degrés sur un seul angle d'élévation ou selon un cône dont l'axe est l'horizon. Ils obtiennent ainsi des données de type PPI qui peuvent être partielles et les pilotes vont souvent ajuster l'angle d'élévation pour repérer les échos significatifs.

Dans les radars commerciaux, les longueurs d’onde utilisées se trouvent généralement dans la bande X (autour de 3 cm soit des fréquences de 8 000 à 12 500 MHz) ce qui permet d’utiliser de petites antennes ayant quand même une bonne résolution. La portée utile maximale est en général de 180 milles nautiques (334 kilomètres) mais le plus souvent, le pilote règle celle-ci de 30 à 80 milles nautiques à cause de l’atténuation à cette longueur d'onde et du besoin de se concentrer surtout sur l’environnement immédiat.

Solutions actuelles et futures

Filtrage

Image radar brute et filtrée
Installation de l'antenne d'un ancien radar SPY-1A de la US La Navy au National Severe Storms Laboratory, Norman, Oklahoma

La boucle suivante montre comment on peut nettoyer une image brute de réflectivité pour trouver les vrais échos dus à la précipitation. Comme ces derniers sont en général mobiles, en éliminant les échos dont la vitesse est nulle, obtenue par traitement Doppler, il ne nous reste que les vrais échos. Bien que le traitement soit complexe et faillible, il donne en général des résultats très intéressants. Les problèmes dus au changement de type de précipitations, au mélange de ces derniers et aux cibles non météorologiques, comme les oiseaux, peuvent quant à eux être filtrés par l'utilisation d'un filtre venant des données de polarisation. Ceci commence à être fait expérimentalement et donne de bons résultats.

Réseau à petite échelle

La résolution du radar est également un facteur important dans l'identification et la mesure des intensités des précipitations. On peut augmenter le diamètre de l'antenne afin de diminuer la largeur du faisceau mais les coûts sont importants. Une autre façon est d'augmenter la densité du réseau de radars afin d'utiliser les données les plus près de chaque radar, là où le faisceau est le moins large.

Un tel programme appelé CASA, pour Center for Collaborative Adaptive Sensing of the Atmosphere, subdivise la région couverte par un radar régulier et chaque secteur est couvert par petit radar peu coûteux qui ne sonde qu'à bas niveau. Ceci ajoute de l'information de grande résolution à bas niveau et comble le manque de données sous l'angle minimum du radar principal. Un tel réseau peut utiliser une longueur d'onde plus courte ce qui diminue la grosseur des antennes mais l'atténuation par les précipitations est significative. Il faut alors que chaque point soit couvert par plusieurs radars qui vont compenser pour l'atténuation en « regardant » chacun d'une direction différente. Un tel réseau pourrait même théoriquement remplacer les radars actuels si le coût et la technologie de coordination du sondage deviennent compétitifs.

Balayage électronique

Depuis 2003, un radar tridimensionnel à balayage électronique, acheté de la United States Navy par le service météo de la NOAA, est mis à l'essai pour voir l'utilité de ce concept dans la détection des précipitations. L'avantage de ce type d'antenne est d'obtenir un sondage de l'atmosphère dans un temps beaucoup plus rapide qu'avec une antenne conventionnelle, permettant de voir l'évolution des orages avec une résolution temporelle grandement supérieure. Comme ces derniers peuvent changer de caractéristiques très rapidement et donner du temps violent, l'espoir est de pouvoir mieux anticiper le déclenchement des phénomènes violents (tornade, grêle, pluie torrentielle et rafales descendantes) et ainsi améliorer les préavis d'alertes météorologiques.

On estime qu'il faudra de 10 à 15 ans pour compléter les recherches et faire les plans pour construire une nouvelle génération de radars météorologiques utilisant ce principe qui pourraient donner un sondage complet en moins de 5 minutes. Le coût estimé de cette expérience est de 25 millions USD.

Page générée en 0.249 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise