Les cycles diaziniques, dont la pyrimidine, sont des cycles aromatiques Pi-déficitaires car le doublet non-liant de l’azote ne participe pas au système aromatique. Etant donné l’électronégativité supérieure des atomes d’azote, les atomes de carbone du cycle seront donc déficients en électrons. Les pyrimidines seront donc des cycles pauvres en électrons, basiques et sensibles à la complexation du fait de la disponibilité du doublet non liant de l’azote. Du fait du caractère déficient en électron des atomes de carbone, les cycles diaziniques sont la plupart du temps peu sensibles aux attaques des réactifs électrophiles (Schéma 53). Cependant la présence d’un groupement électro-donneur sur le cycle, peut compenser cet effet. La position 5 de la pyrimidine, également appelée position « aromatique » car elle est moins déficiente en électron que les positions 2, 4 ou 6 peut dans certains cas subir des attaques électrophiles. A l’opposé, les attaques nucléophiles peuvent avoir lieu facilement sous forme d’addition ou de substitution, que ce soit avec des nucléophiles azotés, oxygénés, soufrés, halogénés.... Certains réducteurs peuvent conduire à une réduction du cycle diazinique et les oxydants tels que H2O2, les peracides peuvent conduire à des N-Oxydes L’échange halogène-métal via des dérivés lithiés, très efficace en série benzénique et pyridinique ne peut être que rarement utilisé en série pyrimidinique à cause de la réaction parasite d’addition nucléophile des alkyllithiums sur la structure aromatique. La plupart des exemples de la littérature concernent la position 5 de la pyrimidine. Une méthode d’échange halogène-métal par utilisation du tri-n-butylmagnésiate de lithium en série diazinique a récemment été mise au point La fonctionalisation de la pyrimidine via la réaction de métallation a été initiée dans les années 90. Etant donné la faible énergie des orbitales basses vacantes des diazines, les réactions d’addition nucléophiles sont des réactions concurrentes de la réaction de métallation. L’utilisation d’alkyllithiums n’est donc généralement pas efficace pour métaller les diazines. Cependant l’effet fortement attracteur des deux atomes d’azote rend les hydrogènes du cycle plus acide, ce qui permet d’utiliser les bases plus faibles mais moins nucléophiles tels que les alkylamidures de lithium comme le LDA (Lithium di-i-propylamide) ou la LTMP (Lithium 2,2,6,6-tetramethylpiperidide). Il est à noter que contrairement au benzène ou à la pyridine, la présence d’un groupement ortho-directeur n’est pas toujours nécessaire. La pyrimidine peut également subir des réactions de couplage croisé catalysées par des métaux de transition tel que le Palladium. Le plus souvent la pyrimidine est utilisée comme électrophile (pyrimidines halogénées). La particularité des cycles diaziniques est que les couplages croisés peuvent le plus souvent être réalisés sur des dérivés chlorés en utilisant comme catalyseur le traditionnel tetrakis(triphenylphosphine)palladium (0) . En effet, en raison du caractère Pi-déficitaire du cycle diazinique, la liaison carbone-chlore est activée et rend possible l’addition oxydante du palladium. Ainsi des réactions de Suzuki , de Stille et de Negishi peuvent être réalisées sur des chlorodiazines en utilisant comme catalyseur Pd(PPh3)4. Quelques exemples de couplages de Sonogashira sur des chloropyrimidines sont décrits dans la littérature mais en général avec des rendements plus faibles que dans le cas de dérivés bromés, iodés ou triflés. Il est a noter que lors d’une réaction de couplage sur la pyrimidine, un chlore en position 4 est plus réactif qu’un chlore en position 2 lui même plus réactif qu’un chlore en position 5 . La pyrimidine peut être également utilisée comme nucléophile par le biais de dérivés organométalliques, ainsi certains dérivés organozinciques et stannylés de pyrimidines , ont été décrits. Quelques dérivés borylés de diazines ont été décrits principalement en position 5 de la pyrimidine .