Pulsar - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Physique des pulsars

Origine de l'émission « pulsée »

Les impulsions observées sont produites par un rayonnement issu de l'étoile à neutrons en rotation. Du fait que le rayonnement n'est pas isotrope, la rotation de l'étoile provoque une modulation temporelle de celui-ci. L'interprétation en est que les processus de rayonnement sont liés au champ magnétique de l'étoile à neutrons, et que l'axe du champ magnétique n'est pas aligné avec son axe de rotation. Ainsi, le rayonnement, dont il semble vraisemblablement qu'il soit centré sur les pôles magnétiques de l'étoiles, est-il émis à un instant donné sous forme de deux faisceaux dans des directions opposées. Ces deux faisceaux balaient l'espace du fait de la rotation de l'étoile à neutron en décrivant un cône d'une certaine épaisseur.

La mise en évidence la plus convaincante du scénario ci-dessus provient de ce que l'étoile à neutrons se comporte ainsi comme un dipôle magnétique en rotation. Une telle configuration est amenée à perdre de l'énergie du fait de sa rotation, aussi la période des signaux du pulsar doit-elle s'allonger avec le temps. Ce phénomène de ralentissement des pulsars est en effet observé de façon quasi systématique dans ces objets. De façon plus précise, il est possible de prédire la forme exacte du ralentissement observé des pulsars. D'une part, il est possible de comparer l'âge déduit de l'observation du ralentissement avec l'âge réel du pulsar quand celui-ci est connu (comme pour le pulsar du Crabe), d'autre part, la loi d'évolution temporelle de la période de rotation du pulsar doit dépendre d'un paramètre appelé indice de freinage dont la valeur attendue est 3. Cet indice est malheureusement assez difficile à mesurer (il ne peut être mis en évidence en quelques années que sur des pulsars jeunes), mais la valeur trouvée est souvent relativement proche de 3, quoique presque systématiquement inférieure à cette valeur. La raison de cet écart n'est pas bien connue à l'heure actuelle.

La population des pulsars : le diagramme « P-P point »

Représentation de l'ensemble de pulsars connus début 2008 dans un diagramme montrant en abscisse leur période P (exprimée en secondes) et en ordonnée leur ralentissement (exprimé en seconde par seconde, soit un nombre sans dimension). Quelques types de pulsar sont représentés par divers codes de couleurs. Les pulsars ordinaires sont en rouge (+), les pulsars possédant une émission de haute énergie sont en bleu (*), parmi ceux-ci les pulsars X anormaux sont en vert (×) et les pulsars présents dans les systèmes binaires sont en violet (carrés). De façon manifeste, les différentes sous-classes de pulsars ne se répartissent pas aléatoirement dans le diagramme.

Le phénomène de ralentissement des pulsars provoque une lente augmentation de la période P d'un pulsar, qui est vu comme étant lentement croissante au cours du temps. Cet accroissement est traditionnellement noté \dot P (prononcer « P point », ou dot P en franglais), la dérivée temporelle d'une quantité physique étant en général notée avec un point surmontant ladite quantité. Le temps caractéristique avec lequel la période augmente est de l'ordre de l'âge du pulsar. Ces objets étant pour la plupart détectables pendant plusieurs millions d'années, le taux d'accroissement de la période d'un pulsar est extrêmement lent. Même si ce taux d'accroissement est relativement facile à mettre en évidence (en quelques heures d'observation seulement), il n'en demeure pas moins que les pulsars peuvent être vus comme des horloges naturelles extraordinairement stables, dont la stabilité à long terme est comparable à celle des meilleures horloges atomiques terrestres.

Le diagramme P-P point révèle plusieurs types de pulsar.

  • Le gros de la population des pulsars a une période de rotation centrée sur une seconde (entre 0,2 et 2 secondes) et un ralentissement entre 10-14 et 10-16. Ces deux chiffres illustrent l'extrême stabilité du signal émis par un pulsar. Le temps caractéristique mis par sa période pour varier d'un facteur 2 (en supposant que la période varie linéairement avec le temps) est égal à P / \dot P, soit, avec des valeurs de 1 seconde et 10-15 pour la période et le ralentissement, 1015 secondes, soit plusieurs dizaines de millions d'années. L'amplitude du ralentissement est directement liée au champ magnétique du pulsar. Celui-ci est extrêmement élevé, essentiellement parce que lors de l'effondrement du cœur de l'étoile qui donne naissance à la supernova, le flux magnétique B R2 est conservé, où B est le champ magnétique et R le rayon de l'étoile. R passant d'une valeur de plusieurs dizaines de milliers de kilomètres à une dizaine de kilomètre, le champ magnétique se voit considérablement augmenté
  • Certains pulsars ne sont pas uniquement observés dans le domaine radio, mais présentent une émission modulée de haute énergie, c'est-à-dire dans le domaine des rayons X ou des rayons gamma. Ces pulsars ont un ralentissement très élevé, supérieur à 10-14 voire 10-10. La valeur élevée du ralentissement indique des objets jeunes, hypothèse compatible avec une émission de haute énergie. Ces pulsars à émission de haute énergie se scindent en deux populations distinctes : une avec une courte période (de l'ordre de 0,1 seconde) et un ralentissement modérément élevé (entre 10-13 et 10-14, l'autre avec une période très longue (entre 5 et 12 secondes) et un ralentissement très élevé (pouvant dépasser 10-10). Cette seconde classe représente ce que l'on appelle les pulsars X anormaux (voir ci-dessous).
  • Il existe des pulsars situés dans des systèmes binaires. Ceci n'est pas surprenant dans la mesure où la majorité des étoiles naissent dans les systèmes binaires. Une étoile a une durée de vie d'autant plus brève que sa masse est élevée. Une étoile massive, à même de produire en fin de vie une supernova puis une étoile à neutrons va ainsi laisser cette dernière en orbite autour de son compagnon. Il peut paraître surprenant qu'un système binaire survive à une explosion de supernova. Les calculs indiquent cependant que c'est le cas. Dans une telle configuration, la seconde étoile va poursuivre son évolution. Lors de celle-ci, elle va être susceptible de perdre de la masse, par exemple en raison du phénomène de vent stellaire, ou lors d'une phase dite de géante rouge où son volume augmente considérablement au point qu'une partie de ses couches externes soient captées par l'étoile à neutron voisine (on parle alors d'accrétion). Dans un tel cas, la matière ainsi arrachée suit une trajectoire complexe avant de s'écraser en spiralant à la surface de l'étoile à neutrons, à laquelle elle confère le moment cinétique qu'elle a acquis. Ce phénomène provoque une accélération de la période de rotation du pulsar, qui se voit ainsi « recyclé », acquérant une nouvelle fois une période de rotation très faible, typiquement de 2 à 20 millisecondes. De tels pulsars sont appelés, pour des raisons évidentes, pulsars milliseconde. Leur ralentissement est par contre très faible, signe que leur champ magnétique a considérablement baissé. La raison expliquant ce phénomène est mal connue aujourd'hui, il semble qu'elle soit intimement liée au processus d'accrétion qui recycle le pulsar.

Évolution des pulsars

Partant d'une période de rotation initiale sans doute très rapide (quelques dizaines de millisecondes, voire quelques millisecondes seulement), les pulsars ralentissent lentement. De temps en temps, on observe de très brusques quoique faibles variations de cette vitesse de rotation, un phénomène appelé glitch. Une interprétation de ce phénomène était que le pulsar devait régulièrement ajuster la forme de sa croûte solide du fait du ralentissement de sa rotation, la croûte devant être de plus en plus sphérique. On parle ainsi de « tremblement d'étoile », bien que le terme de « tremblement de croûte » soit plus opportun (starquake ou crustquake en anglais, par analogie à earthquake qui signifie « tremblement de terre »). Cette interprétation est compatible avec les observations pour certains pulsars, mais se heurte au comportement d'autres pulsars, notamment celui de Vela. Il est aujourd'hui établi qu'au moins pour certains pulsars, le phénomène de glitch est dû à un couplage complexe entre la croûte solide de l'étoile à neutrons et son cœur, qui est superfluide. Un modèle naïf décrit ainsi l'étoile à neutrons comme composé de deux couches, la croûte et le cœur, qui voient leur rotation amenée à se désolidariser brusquement avant que par viscosité les deux se synchronisent à nouveau, à l'instar d'un œuf frais auquel on imprime un mouvement de rotation. La rotation de la coquille de l'œuf, au début très rapide, ralentit à mesure que les forces visqueuse entraînent le jaune et le blanc d'œuf à la même vitesse que la coquille (au départ seule la coquille est en rotation et par conservation du moment cinétique, la rotation d'ensemble de la configuration d'équilibre où tout est en rotation synchrone est plus lente que celle où seule la coquille est en rotation).

Un escalator sous l'océan
Il y a 21 minutes
Page générée en 0.298 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise