Pulsar - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Observation et détection des pulsars

Les pulsars sont en général plus facilement observables en radio. Leur détection requiert par contre un certain soin. En effet, la vitesse de propagation des ondes radio est très légèrement inférieure à celle de la lumière du fait de la densité très faible mais non nulle du milieu interstellaire. Les calculs indiquent que cette vitesse de propagation dépend de la longueur d'onde d'observation. En conséquence de quoi, le train de pulses d'un pulsar va arriver décalé d'une fréquence à l'autre, ce que l'on appelle mesure de dispersion. Si l'on observe sur une bande de fréquence trop large, alors le décalage des temps d'arrivée peut devenir supérieur à la période du pulsar, et l'on perd l'émission périodique de celui-ci. Pour détecter un pulsar, il convient donc d'observer des bandes de fréquences très étroites. Le problème est alors que la densité de flux reçue est très faible. En pratique, l'on contourne le problème en observant plusieurs bandes de fréquence et en regardant si l'on arrive à les combiner en un signal périodique une fois supposée la présence de dispersion.

Le tableau ci-dessous liste les principales opérations dédiées sur l'un des grands radiotélescopes terrestres en vue de détecter des pulsars.

Observatoire Fréquence
de recherche
(MHz)
Canaux et
bande passante
(MHz)
Échantillonnage
(ms)
Sensibilité
(mJy)
Région couverte Nombre
de pulsars
découverts
Année et références
Molonglo 408 4 - - - 31 1968, 1969
Jodrell Bank 408 4 40 10 0°<l<40°
|b|<10°
31 1970
Arecibo 430 8 5,6 - 35°<l<75° et 170°<l<75°
|b|<4°
31 1974, 1975
Molonglo 408 4 10 - δ<20° 155 1978
Green Bank 408 16 16 - δ>20° 23 1982
Green Bank 390 16 16 2 δ<-18° 34 1985
Green Bank 390 8 2 3 3725 degrés carrés 20 1986
Jodrell Bank 1400 40 2 1 -5°<l<95°, |b|<1° et
95°<l<105°, |b|<0,6°
40 1992
Parkes 1500 80 et 320 0,3 et 1,2 2,5 et 1,0 270°<l<20°
|b|<10°
46 1992
Arecibo 430 10 0,25 0,2 9128 degrés carrés 19 1995
Parkes 436 32 0,3 3 Ciel austral complet 101 1996
Arecibo 430 8 0,25 0,5 680 degrés carrés 12 1996
Arecibo 430 8 0,2 et 0,3 0,7 960 degrés carrés 12 1996
Parkes 1374 96×3 0,125 0,5 260°<l<50°
5°<|b|<10°
69 2001
Parkes 1374 96×3 0,25 0,17 260°<l<50°
|b|<5°
700 2001, 2002, 2003

Historique de la découverte

Les pulsars ont été découverts en 1967 par Jocelyn Bell et Antony Hewish à Cambridge alors qu'ils utilisaient un radiotélescope pour étudier la scintillation des quasars. Ils trouvèrent un signal très régulier, constitué de courtes impulsions de rayonnement se répétant de façon très régulière (la période de 1,337301192 seconde étant ultérieurement mesurée avec une très haute précision). L'aspect très régulier du signal plaidait pour une origine artificielle, mais une origine terrestre était exclue car le temps qu'il prenait pour réapparaître était un jour sidéral et pas un jour solaire, indiquant une position fixe sur la sphère céleste, chose impossible, même pour un satellite artificiel.

Ce nouvel objet fut baptisé CP 1919 pour Cambridge Pulsar [à proximité de] 19h 19m [d'ascension droite] et est nommé aujourd'hui PSR B1919+21 pour PulSaR à 19h19m en ascension droite et +21° de déclinaison. Pour l'anecdote, la désignation initiale donnée par Jocelyn Bell et Antony Hewish était « LGM-1 », pour Little Green Men-1 (litt. « petits hommes verts-1 »), car le signal faisait penser à celui provenant d'une balise qui aurait été fabriquée par une intelligence extraterrestre. Après maintes spéculations, il fut admis que le seul objet naturel qui pourrait être responsable de ce signal était une étoile à neutrons en rotation rapide. Ces objets n'avaient pas encore à l'époque été observés, mais leur existence comme produit de l'explosion d'une étoile massive en fin de vie ne faisait guère de doute. La découverte du pulsar PSR B0531+21 au sein de la Nébuleuse du Crabe (M1), résultat de la supernova historique SN 1054 abondamment décrite par les astronomes d'extrême-Orient (Chine, Japon) acheva de parfaire l'identification entre pulsars et étoiles à neutrons.

La population de pulsars s'enrichit peu à peu de nouveaux objets, dont certains avaient des propriété atypiques. Ainsi, le premier pulsar binaire, c'est-à-dire faisant partie d'un système binaire fut découvert en 1974. Il possédait la propriété remarquable de posséder comme compagnon une autre étoile à neutrons, formant avec lui un système binaire en orbite extrêmement serrée, au point que la gravitation universelle ne permet pas d'expliquer les détails de l'orbite du pulsar, révélée par les modulations des temps d'arrivée de l'émission pulsée de ces objets. La précision élevée des mesures a permis aux astronomes de calculer la perte d'énergie orbitale de ce système, que l'on attribue à l'émission d'ondes gravitationnelles. Un système encore plus remarquable fut découvert en 2004, le pulsar double PSR J0737-3039. Ce système est composé de deux étoiles à neutrons, qui sont toutes deux vues comme des pulsars. Ils forment le système avec une étoile à neutron le plus serré connu à ce jour, avec une période orbitale d'environ deux heures. Encore plus remarquable, l'inclinaison de ce système est très basse (le système est quasiment vu dans son plan orbital), au point qu'un phénomène d'éclipse se produit pendant quelques dizaines de secondes lors de la révolution du système. Cette éclipse n'est pas due au masquage du pulsar d'arrière-plan par la surface de celui d'avant-plan, mais au fait que les pulsars sont entourés d'une région fortement magnétisée et siège de phénomènes électromagnétiques complexes, la magnétosphère. Cette magnétosphère est susceptible d'empêcher la propagation du rayonnement issu du pulsar d'arrière-plan, offrant l'opportunité unique d'étudier la structure de la magnétosphère de ces objets.

Dans les années 1980, on découvrit les pulsars milliseconde, qui, comme leur nom l'indique, possèdent des périodes de quelques millisecondes (typiquement entre 2 et 5). Depuis 1982, le pulsar PSR B1937+21 possédait la fréquence de rotation la plus élevée. Sa fréquence de rotation s'élevait à 642 Hz. Au cours du mois de janvier 2006, une publication a fait état de la détection d'un pulsar baptisé PSR J1748-2446ad (ou Ter5ad pour faire plus court, le pulsar étant situé au sein de l'amas globulaire Terzan 5) et dont la fréquence de rotation s'élève à 716 Hz. La recherche des pulsars à la rotation la plus rapide est d'un intérêt élevé pour l'étude de ces objets. En effet, leur période de rotation maximale est directement liée à leur taille : plus leur taille est petite, plus leur vitesse de rotation maximale peut être élevée, ceci parce que la vitesse de rotation d'un objet est limitée par le fait que la force centrifuge ne peut excéder la force de gravitation, sans quoi l'objet perdrait spontanément la masse située dans ses régions équatoriales. La force centrifuge subie par les régions équatoriales augmente avec la taille de l'objet, alors que sa gravité de surface diminue. Un objet en rotation très rapide est ainsi signe d'un objet intrinsèquement petit, ce qui peut permettre de fixer sa structure interne, une étoile à neutrons très petite étant signe non pas d'un objet peu massif, mais d'un objet très compact.

Page générée en 0.125 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise