Puissance (algèbre) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Opérations algébriques sur les puissances

Il n'y a pas de formule générale sur les additions ou les soustractions de puissances, sauf la factorisation de anbn et le développement de (a + b)n.

En revanche, pour les multiplications et les divisions de puissances, on sait que pour tous nombres a et b et pour tous entiers naturels m et n non nuls :

  • a^m\times{a}^{n}=a^{m+n}  ;
  • \dfrac{a^m}{a^n}=a^{m-n} si a ≠ 0 ;
  • (a\times{b})^{n}=a^{n}\times{b^{n}} (n’est vrai dans le cas général que si a et b commutent)
  • (a^m)^n=a^{m\times{n}}  ;
  • \left(\dfrac{a}{b}\right)^n=\dfrac{a^n}{b^n} si b ≠ 0.


Ces formules sont encore valables si m ou n sont des entiers strictement négatifs, à condition que a et b soient non nuls.

On remarque que la convention « a⁰ = 1 pour tout nombre réel a ≠ 0 » est cohérente avec ces formules ; en effet, pour tout entier naturel n ≠ 0 et pour tout nombre réel a ≠ 0,

  • a^n\times{a}^{-n}=a^{n+(-n)}=a^{n-n}=a^0
    et
  • a^n\times{a}^{-n}={a^n}\times\dfrac{1}{a^n}=\dfrac{a^n}{a^n}=1.

On remarquera qu'en prenant n = 0, les égalités précédentes restent vraies.

Signe de l'exposant et signe du nombre

Il n'y a pas de rapport direct entre le signe de l'exposant et le signe du résultat. Celui-ci dépend de la parité de l'exposant.

Un nombre élevé à une puissance paire donne un résultat positif :

si n est pair, alors ( − a)n = an.

Un nombre élevé à une puissance impaire donne un résultat du même signe :

si n est impair, alors ( − a)n = − an.
Exemples.
  • (-2)³, puissance cubique de -2, vaut (-2) × (-2) × (-2) = -8 < 0.
  • 3⁻⁴, l'inverse de la puissance quatrième de 3, vaut
\dfrac{1}{3^4}=\dfrac{1}{3\times3\times3\times3}=\dfrac{1}{81}>0
Remarque.

Il ne faut pas confondre les écritures ( − a)n, où la puissance s'applique à -a (signe moins compris) et an, où la puissance s'applique à a uniquement. En effet :

  • (-a)^n = (-a)\times(-a)\times(-a)\times \dots \times(-a)
  • -a^n = - a\times a\times a\times \dots \times a

Exponentielle

Les puissances entières sont en fait des cas particuliers de la fonction exponentielle :

ab = exp(b ln a), définie pour tout réel a > 0.

À partir de la fonction exponentielle, on peut définir :

  • des puissances fractionnaires : x^{1/n} = \sqrt[n]{x} , où n est un entier, qui coïncident avec les racines nes pour tout x > 0. Voir racine carrée, racine cubique et racine d'un nombre ;
  • des puissances réelles : xy peut être défini pour y réel et tout x > 0.

Ces puissances fractionnaires et réelles répondent aux même règles que les puissances entières. Notamment, pour tous a > 0, b et c réels quelconques :

  • a^b \times a^c = a^{b+c}  ;
  • (a^b)^c = a^{b \times c} .

On a en particulier :

  • a^{-1/b} = \dfrac{1}{\sqrt[b]{a}} , pour tout entier b ;
  • \sqrt[c]{a^b} = a^{b/c} , si c est entier ;
  • (a^b)^{1/b} = (a^{1/b})^b = \sqrt[b]{a^b} = \left ( \sqrt[b]{a} \right )^b = a^{b/b} = a si b ≠ 0.

Puissances de dix

Les puissances de 10 sont des cas particuliers de puissance. Leur intérêt réside dans le fait que notre écriture est décimale.

Table des puissances de dix
Puissance de dix
négatives ou nulle
Préfixe Puissance de dix
positives ou nulle
Préfixe
10⁰ = 1 - 10⁰ = 1 -
10⁻¹ = 0,1 d (déci-) 10¹ = 10 da (déca-)
10⁻² = 0,01 c (centi-) 10² = 100 h (hecto-)
10⁻³ = 0,001 m (milli-) 10³ = 1 000 k (kilo-)
10⁻⁴ = 0,000 1 - 10⁴ = 10 000 -
10⁻⁵ = 0,000 01 - 10⁵ = 100 000 -
10⁻⁶ = 0,000 001 µ (micro-) 10⁶ = 1 000 000 M (méga-)
etc. etc. etc. etc.

Le nombre 10 élevé à une puissance entière positive n est un chiffre 1 suivi de n zéros.

Le nombre 10 élevé à une puissance entière négative -n est un 1 placé à la n e position dans un nombre décimal, i. e. précédé de n zéros en comptant celui avant la virgule.

On utilise fréquemment les puissances multiples de 3, qui correspondent aux préfixes du système international :

Table des puissances de dix multiples de trois
Puissance de dix
négatives
Préfixe SI Puissance de dix
positives
Préfixe SI
10⁻³ = 0,001
un millième
m (milli-) 10³ = 1 000
mille
k (kilo-)
10⁻⁶ = 0,000 001
un millionième
µ (micro-) 10⁶ = 1 000 000
un million
M (méga-)
10⁻⁹ = 0,000 000 001
un milliardième
n (nano-) 10⁹ = 1 000 000 000
un milliard
G (giga-)
10⁻¹² = 0,000 000 000 001
un millième de milliardième
p (pico-) 10¹² = 1 000 000 000 000
mille milliard ou un billion (anglicisme)
T (téra-)
etc. etc. etc. etc.

Si la virgule signale la position des unités dans l'écriture d'un nombre décimal, multiplier par 10 revient à déplacer la virgule d'un rang vers la droite et diviser par 10 revient à déplacer la virgule d'un rang vers la gauche. Donc multiplier par 10n pour tout entier positif n revient à déplacer la virgule de n rangs vers la droite ; diviser par 10n pour tout entier positif n revient à déplacer la virgule de n rangs vers la gauche. Ainsi,

  • 325,72 × 10 = 3 257,2
  • 325,72/10 = 32,572
  • 325,72 × 10⁵ = 32 572 000
  • 325,72/10⁵ = 0,003 257 2

Il faut savoir que ce sont la base des théories pour faire tous les calculs par la suite.

Les propriétés énoncées sur les puissances de a restent valables pour les puissances de 10.

L'utilisation des puissances de 10 intervient :

  • dans l'écriture explicite en base 10 :
325,72 = 3·10² + 2·10¹ + 5·10⁰ + 7·10⁻¹ + 2·10⁻² ;
325,72 est noté 3,257 2 × 10²
où le nombre est écrit comme le produit d'un nombre, appelé mantisse, compris entre 1 et 10 (strictement inférieur à 10), avec une puissance entière de 10 appelée exposant ;
  • et dans la notation ingénieur :
325,72 est noté 325,72
32 572 est noté 32,572 × 10³
où le nombre est écrit comme produit d'un nombre compris entre 1 et 999 compris, avec une puissance de 10 dont l'exposant est un multiple de 3.
Page générée en 0.086 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise