Produit vectoriel - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Notation

Plusieurs notations sont en concurrence pour le produit vectoriel :

  • En France, le produit vectoriel de u et de v est noté u\wedge v, où le V inversé se lit wedge ou vectoriel. Cette notation a été initiée par Cesare Burali-Forti et Roberto Marcolongo en 1908. Son inconvénient est de rentrer en conflit avec la notation du produit extérieur.
  • Dans la littérature anglophone (et au Canada francophone, ainsi qu'en Suisse), le produit vectoriel est noté u\times v. Cette notation est due à Josiah Willard Gibbs. Son inconvénient est d'induire une confusion éventuelle avec le produit des réels et le produit cartésien. Mais ces produits ne portent pas sur des objets de même nature.
  • Une troisième notation est l'utilisation des crochets de Lie : \left[\vec u\, , \vec v\right].

Dans cet article, nous utiliserons la première convention.

Définitions alternatives

Comme produit de Lie

Toute isométrie directe de R3 est une rotation vectorielle. L'ensemble des isométries directes forme un groupe de Lie classique noté SO(3) (autrement dit, un sous-groupe fermé de GL3(R)). Son algèbre de Lie, notée so(3) est la sous-algèbre de Lie de gl3(R) définie comme l'espace tangent de SO(3) en l'identité. Un calcul direct montre qu'il est l'espace des matrices antisymétriques de taille 3. Cet espace est a fortiori stable par le crochet de Lie.

Toute matrice antisymétrique M de taille 3 s'écrit de manière unique :

M=\begin{pmatrix} 0 & -c & b\\ c & 0 & -a\\ -b & a & 0 \end{pmatrix}.

En identifiant M et le vecteur (a, b, c), on définit un isomorphisme linéaire entre so(3) et R3. Le crochet de Lie se transporte via cet isomorphisme, et R3 hérite d'une structure d'algèbre de Lie. Le crochet [u, v] de deux vecteurs est précisément le produit vectoriel de u et de v.

En effet, si u1=(a1, b1, c1), et u2=(a2, b2, c2), leur crochet se calcule en introduisant les matrices antisymétriques correspondantes M1 et M2 :

[M_1,M_2]=M_1M_2-M_2M_1=\begin{pmatrix} 0 & a_2b_1-a_1b_2 & a_2c_1-a_1c_2\\ a_1b_2 -a_2b_1 & 0 & b_2c_1-b_1c_2\\ a_1c_2-a_2c_1 & b_1c_2-b_2c_1 & 0 \end{pmatrix}

Le vecteur correspondant, à savoir [u1,u2], a donc pour coordonnées (b1c2-b2c1, a2c1-a1c2, a1b2-a2b1). Cette approche redéfinit donc le produit vectoriel.

Si on suit cette approche, il est possible de prouver directement l'invariance du produit vectoriel par isométries

f\left[u\wedge v\right]=f(u)\wedge f(v).

En tant qu'algèbres de Lie, so(3) a été identifié à R3. L'action (linéaire) de SO3(R) sur R3 s'identifie à l'action par conjugaison sur so(3). SO3(R) opère donc par automorphisme d'algèbres de Lie. Autrement dit, l'identité ci-dessus est vérifiée.

Comme produit de quaternions imaginaires

Il est possible de retrouver produit vectoriel et produit scalaire à partir du produit de deux quaternions purs. Pour rappel, le corps (non commutatif) des quaternions H est l'unique extension de R de dimension 4. Sa base canonique est (1,i, j, k) où le sous-espace engendré par i, j, k forme l'espace des quaternions purs, canoniquement identifié avec R3. Ces éléments vérifient :

i^2 = j^2 = k^2 = ijk = -1\, ;
ij=-ji=k\quad ;\quad jk=-kj=i\quad ;\quad ki=-ik=j.

Si q1=a1i+b1j+c1k et q2 = a2i+b2j+c2k, le produit q1q2 se calcule immédiatement :

q1q2 = − (a1a2 + b1b2 + c1c2) + (b1c2b2c1)i + (c1a2c2a1)j + (a1b2a2b1)k.

La partie réelle est au signe près le produit scalaire de q1 et de q2, la partie imaginaire est un quaternion pur qui correspond au produit vectoriel, après identification avec R3.

Cette coïncidence trouve ses explications dans le paramétrage du groupe SO(3) par les quaternions unitaires.

Il est de nouveau possible de justifier l'invariance par isométrie. Toute isométrie de l'espace des quaternions imaginaires s'écrit comme la conjugaison par un quaternion unitaire. Si q est un quaternion unitaire, et q1, q2 sont des quaternions imaginaires, il suffit de constater :

\left[qq_1\overline{q}\right].\left[qq_2\overline{q}\right]=q(q_1q_2)\overline{q}

pour en déduire l'invariance par isométrie du produit vectoriel.

Par le produit tensoriel

Soient deux vecteurs à trois composantes ui et vj. On peut définir le tenseur

u\otimes v =\begin{pmatrix} u_1 v_1 & u_1 v_2 & u_1 v_3 \\ u_2 v_1 & u_2 v_2 & u_2 v_3 \\ u_3 v_1 & u_3 v_2 & u_3 v_3 \\ \end{pmatrix}

qui, en notation tensorielle, s'écrit simplement :

[u\otimes v]_{ij}= u_i\cdot v_j

Ce tenseur peut se décomposer en la demi-somme de deux tenseurs, l'un complètement symétrique :

[u\odot v]_{ij}=u_i\cdot v_j + u_j\cdot v_i

qui a 6 composantes indépendantes, et l'autre complètement anti-symétrique :

[u\wedge v]_{ij}=u_i\cdot v_j - u_j\cdot v_i

qui a 3 composantes indépendantes. On peut alors « transformer » ce tenseur anti-symétrique en un vecteur à trois composantes en utilisant le symbole de Levi-Civita \varepsilon_{ijk} (ce dernier est un pseudo-tenseur dont la définition fait intervenir la métrique et l'orientation) :

z_k = \varepsilon_{ijk} \cdot (u_i\cdot v_j - u_j\cdot v_i )

(selon la convention de sommation d'Einstein, on somme sur i et sur j dans la formule ci-dessus). Le vecteur zk est le produit vectoriel de ui et vj.

On voit que si l'on échange les indices i et j, le signe change, ce qui illustre l'antisymétrie du produit vectoriel. En outre le résultat est un « pseudovecteur » puisqu'il est renversé si on change l'orientation de l'espace.

Page générée en 0.838 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise