Produit cartésien - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Somme disjointe

Dans une réunion d'ensembles AB, l'origine des éléments y figurant est perdue. Un moyen d'éviter cette perte d'information est de réunir non pas directement les ensembles de départ, mais des copies de ces ensembles de la forme  { α } × A  et  { β } × B , où « α » et « β » sont deux symboles quelconques distincts servant à identifier les ensembles A et B, par exemple « Ø » et « { Ø } », ou « 0 » et « 1 ».

L'union disjointe, encore appelée somme disjointe ou somme cartésienne de deux ensembles A et B est ainsi définie par :

  A + B = A \dot \cup B  = ( \{ 0 \} \times A ) \cup ( \{ 1 \} \times B )

On peut remarquer que la somme disjointe de deux ensembles vérifie également la propriété fondamentale des couples. De plus, contrairement aux couples de Kuratowski, cette notion, qui n'utilise que des opérations ensemblistes élémentaires, peut s'appliquer aux classes propres. C'est pourquoi les sommes disjointes sont parfois appelées couples généralisés, et utilisées ainsi en théorie des classes.

La somme disjointe peut se généraliser à plus de deux ensembles. Par exemple, pour trois ensembles quelconques A, B et C:

 A\dot \cup  B \dot \cup  C  = ( \{ 0 \} \times A ) \cup ( \{ 1 \} \times B ) \cup ( \{ 2 \} \times C )

On rappelle que l'entier de von Neumann 2 peut se définir comme {Ø, {Ø}} . Plus généralement, l'entier de von Neumann n étant défini, l'entier de von Neumann n+1 est défini par n+1 = n ∪ {n}.

On peut donc généraliser ce qui précède et définir ainsi la somme disjointe de n ensembles  A_0 , A_1, \cdots A_{n-1} quelconques :

  A_0 \dot\cup A_1 \dot\cup\cdots\dot\cup A_{n-1} = \bigcup_{i=0}^{n-1}(\{i\}\times A_i)

D'autre part cette définition de la somme disjointe utilise les entiers de la théorie des ensembles, non ceux du méta-langage. On peut donc également généraliser cette notion à des ensembles quelconques (non nécessairement finis) d'indices, par exemple des réunions disjointes dénombrables.

La définition de la somme disjointe souffre d'un arbitraire inessentiel. On peut définir la somme disjointe comme étant la réunion  \bigcup_{i\in I} (A_i\times\{i\}) ou bien  \bigcup_{i\in I} (\{i\}\times A_i) . Ces deux possibilités correspondent respectivement à un marquage « à droite » ou « à gauche » des éléments de la réunion  \bigcup_{i\in I} A_i selon l'indice associé à l'ensemble dont ils proviennent. Dans les deux cas, il existe une surjection de la somme disjointe sur la réunion, qui est une bijection si les ensembles de la famille (A_i)_{i\in I} sont disjoints deux à deux. (Voir la section famille d'ensembles pour la notation.)

Généralisation à plus de deux ensembles

Triplets

Comme pour les couples, l'important, c'est leur propriété fondamentale : deux triplets sont égaux si et seulement si leurs premières composantes sont égales entre elles, puis leurs deuxièmes composantes, et enfin leurs troisièmes :

 \forall a , \forall b , \forall c , \forall d , \forall e , \forall f , [\, ( a , b , c ) = ( d , e , f ) \,] \Leftrightarrow [\, ( a = d ) \wedge ( b = e ) \wedge ( c = f ) \,]

Là encore, cette propriété ne suffit pas à définir la notion de triplet, et là encore, plusieurs définitions incompatibles entre elles sont possibles a priori. On pose habituellement :

 \forall a , \forall b ,  \forall c , ( a , b , c ) = ( ( a , b ) , c )

Produit cartésien de trois ensembles

Il est défini par :

 A \times B \times C = \left \{ ( a, b, c ) | ( a \in A ) \wedge ( b \in B ) \wedge ( c \in C ) \right \}

D'après ce qui précède, A x B x C = ( A x B ) x C. Là encore l'ordre des termes est important. Le produit A x A x A est appelé cube cartésien de A et il est noté A3 (lire « A au cube ») :

 A^{3} = \{ ( x, y , z) | ( x \in A ) \wedge ( y \in A ) \wedge ( z \in A ) \}

Multiplets

Les définitions précédentes se généralisent par récurrence :

  • Propriété fondamentale d'un multiplet d'ordre n, ou n-uplet :
 \forall a_{1} , \forall a_{2} , \cdots , \forall a_{n} , \forall b_{1} , \forall b_{2} , \cdots , \forall b_{n} ,
 [\, ( a_{1} , a_{2} , \cdots a_{n} ) = ( b_{1} , b_{2} , \cdots b_{n} ) \,] \Leftrightarrow [\, ( a_{1} = b_{1} ) \wedge ( a_{2} = b_{2} ) \wedge \cdots ( a_{n} = b_{n} ) \,]
  • Définition d'un n-uplet :
 \forall a_{1} , \forall a_{2} , \cdots \forall a_{n} , ( a_{1} , a_{2} , \cdots a_{n-1} , a_{n} ) = ( ( a_{1} , a_{2} , \cdots a_{n-1} ) , a_{n} )
  • Produit cartésien de n ensembles :
 A_{1} \times A_{2} \times \cdots \times A_{n-1} \times A_{n} = ( A_{1} \times A_{2} \times \cdots \times A_{n-1} ) \times A_{n}
  • Puissance cartésienne n-ième d'un ensemble :
 A^{n} = A^{n-1} \times A = \prod_{i=1}^n A = \{ ( x_1 , x_2 , \cdots x_n ) | \,\forall i , x_i \in A \,\}

Note : en peut définir des produits cartésiens infinis (voir ci-dessous), mais pour le faire, nous avons besoin de la notion de fonction.

Page générée en 0.088 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise