La prévision numérique du temps (PNT) est une application de la météorologie et de l'informatique. Elle repose sur le choix d'équations mathématiques offrant une proche approximation du comportement de l'atmosphère réelle. Ces équations sont ensuite résolues, à l'aide d'un ordinateur, pour obtenir une simulation accélérée des états futurs de l'atmosphère. Le logiciel mettant en œuvre cette simulation est appelé un modèle de prévision numérique du temps.
En physique et en génie, l'approche classique pour obtenir des équations possédant une valeur prédictive consiste à résoudre une ou plusieurs équations différentielles contenant la variable temporelle. Dans les cas les plus commodes, la solution exprime les variables à prévoir en fonction du temps et des conditions initiales (les valeurs des variables au moment choisi pour le début de la prédiction). Il suffit alors de nourrir cette équation avec les valeurs numériques requises pour obtenir une solution dite exacte. L'oscillateur harmonique est un exemple d'un problème classique qui se prête bien à cette approche.
Le problème du comportement futur de l'atmosphère est beaucoup plus complexe et n'a de solution exacte que dans quelques sous-ensembles théoriques très restreints. Pour résoudre les équations de la PNT dans le monde réel, il faut utiliser les méthodes de l'analyse numérique. Ces méthodes permettent de reformuler les équations du comportement atmosphérique de manière à pouvoir les résoudre par de nombreuses itérations de calculs numériques bruts. On fait ainsi progresser, dans le modèle, l'état de l'atmosphère à partir d'un point de départ jusqu'à l'intervalle de prévision voulu.
L'inconvénient de ces méthodes numériques est qu'elles exigent de faire une approximation de la continuité du temps et de l'espace sur une grille de calcul; la simulation devient ainsi discontinue dans le temps et l'espace. Les résultats, visualisés sur leur grille de calcul, ont une apparence « pixelisée », semblable à une image numérique. De même, le temps n'est plus une variable continue, les calculs sautant d'une étape temporelle à la suivante.
Exemple typique: l'une des configurations opérationnelles du modèle GEM d'Environnement Canada (en date de 2005) morcelle l'espace de l'Amérique du Nord et les eaux adjacentes en tuiles de 15 km de côté. La taille de ces tuiles définit la résolution horizontale, ou la maille du modèle. De plus, le modèle représente la dimension verticale de l'atmosphère en la divisant en 58 niveaux. Et finalement, chaque ronde de calculs du modèle fait avancer la prévision de 450 secondes. L'intervalle de temps-modèle entre les rondes de calculs est appelé le pas de temps.
En règle générale, il est souhaitable de faire en sorte que le modèle ait la maille la plus fine possible. Cela augmente le réalisme du modèle et minimise l'accumulation de petites erreurs de calculs inhérentes aux méthodes de l'analyse numérique. Par ailleurs, pour une résolution donnée, il existe un pas de temps maximum qu'il ne faut pas dépasser afin de préserver la stabilité et le réalisme des résultats numériques.
Pour obtenir une bonne prévision, il faut aussi tenir compte de phénomènes qui sont plus petits que la résolution du modèle (phénomènes dits sous-maille). Par exemple, un orage est considérablement plus petit que la maille de la plupart des modèles à grande échelle ; pris isolément on pourrait se permettre de le négliger dans le cadre d'une prévision à l'échelle d'un pays ou d'un continent. Mais une zone orageuse, comprenant de nombreux orages dans un domaine géographique étendu, aura un impact important sur le déroulement du cas qui fait l'objet de la prévision, de par la production d'une quantité appréciable de pluie et de son effet dans le bilan énergétique de l'atmosphère. Plus fondamentalement encore : laissé à lui même, le modèle pourrait créer des orages dont la taille horizontale égalerait la maille du modèle, ce qui est complètement irréaliste et fausserait de manière brutale l'évolution de la prévision. On doit donc donner aux orages une existence implicite au sein du modèle afin de dissiper l'énergie convective en respectant les considérations d'échelle.
La représentation de l'influence moyenne à grande échelle des phénomènes de la petite échelle est appelée paramétrisation. Les phénomènes sous-maille les plus communément paramétrisés par les concepteurs des modèles sont :
Le paramétrage des phénomènes physiques ne compense pas complètement les limitations imposées par un espacement trop grand de la maille des modèles. Le choix et l'ajustement des schémas de paramétrisation a un impact important sur la qualité des prévisions.
Pour répondre à des besoins immédiats en matière de prévision du temps, il faut atteindre un compromis acceptable pour maximiser la résolution spatio-temporelle du modèle tout en tenant compte:
Pour les prévisions à court terme, l'état de l'atmosphère dans des régions éloignées importe peu. Une perturbation actuellement sur l'Amérique mettra quelques jours à se propager et à faire sentir son influence sur l'Europe. On peut alors choisir de concentrer une zone de maille fine du modèle sur la région d'intérêt, négligeant ainsi les phénomènes lointains. On parle alors d'un modèle régional.
Pour des prévisions à plus long terme, disons au-delà de deux ou trois jours, il devient nécessaire d'augmenter la couverture du modèle à un hémisphère complet ou encore à tout le globe, afin de bien traiter les phénomènes encore lointains qui se propageront vers la zone d'intérêt. Pour la même raison, la maille du modèle est répartie de manière uniforme sur le globe. Les modèles hémisphériques étant tombés en désuétude, ce type de prévision échoit au modèle global.
En théorie, en augmentant la résolution du modèle, on en augmenterait le réalisme et on réduirait le besoin de recourir à la paramétrisation; toutefois, cela ne peut se faire qu'à un coût informatique et économique considérable, surtout s'il faut obtenir la prévision à l'intérieur d'échéances serrées.
Exemple: si on double la résolution spatiale d'un modèle donné, le nombre de points dans la grille de calcul augmente d'un facteur 8; et si l'on réduit par la même occasion de moitié le pas de temps (doublant ainsi la résolution temporelle), la prévision devient donc 16 fois plus coûteuse informatiquement que la version précédente du modèle. Pour faire face à ce problème, il ne suffit pas de multiplier la puissance brute de calcul: le volume de données à transférer lors des calculs et lors de la mise en stockage des résultats augmente lui aussi par le même facteur. On peut ainsi voir que les opérations d'entrée-sortie, qui constituent un goulot d'étranglement dans tout type d'ordinateur, peuvent devenir un obstacle sérieux à l'augmentation de la résolution des modèles de PNT.
Même un modèle parfait (exempt des trois dernières sources d'erreurs) ne pourrait produire une prévision parfaite, car les erreurs dans les conditions initiales iront en s'amplifiant lors de la prévision et celle-ci divergera de la réalité.
La détermination de l'état atmosphérique du début de la prévision (l'analyse) est en soi un grand défi scientifique qui exige des ressources mathématiques et informatiques comparables à celles dévouées à la prévision elle-même. L'approche la plus communément utilisée en date de 2005 utilise les méthodes du calcul des variations pour ajuster sur le domaine d'analyse une combinaison des observations et d'une prévision numérique à très court terme. Cette approche est désignée par le terme « 3D-Var ». Certains centres de PNT ajustent l'analyse sur un domaine spatio-temporel lors de ces calculs. On parle alors d'une analyse 4D-Var.
À ce sujet, voir aussi: assimilation de données.
Dans les premières décennies d'existence de la prévision numérique du temps, on devait se satisfaire de faire tourner un modèle à la plus haute résolution permise par les contraintes informatiques, et à adopter cette prévision telle quelle. Cette approche suppose implicitement que si les conditions initiales étaient connues parfaitement, et que le modèle lui-même était parfait, la prévision qui s'ensuivrait simulerait parfaitement le comportement futur de l'atmosphère. On qualifie cette approche de déterministe.
En pratique, ni les observations, ni l'analyse, ni le modèle ne sont parfaits. Par ailleurs, la dynamique atmosphérique est très sensible, dans certaines conditions, à la moindre fluctuation. Une nouvelle approche probabiliste a donc été développée, celle de la prévision d'ensemble. La prévision d'ensemble sacrifie la résolution afin de pouvoir consacrer des ressources informatiques à faire tourner simultanément de nombreux exemplaires de modèles sur le même cas de prévision. Dans chaque cas, l'analyse est délibérément rendue légèrement différente des autres membres de l'ensemble, à l'intérieur des incertitudes intrinsèques de mesure ou d'analyse. Les scénarios plus ou moins divergents des prévisions offertes par les membres de l'ensemble permettent de quantifier la prédictibilité de l'atmosphère et d'offrir une marge d'erreur statistique sur la prévision. Le défi dans la conception d'un tel système est de faire en sorte que les fluctuations qu'on y observe constituent un signal représentatif de l'incertitude naturelle de la dynamique atmosphérique.
Certains systèmes de prévision d'ensemble (SPE) font aussi varier les méthodes de paramétrage des modèles membres de l'ensemble afin qu'une partie des fluctuations des prévisions représente les incertitudes de modélisation. Dans la même veine, il y a un intérêt marqué, dans la communauté de recherche sur les prévisions d'ensembles, envers les ensembles multi-modèles (c’est-à-dire combinant des modèles de différentes conceptions) et l'agrégation de SPE de différents pays en un super-ensemble. Il existe en ce moment (2006) deux efforts concrets en ce sens, soit le Système nord-américain de prévision d'ensemble (Canada, États-Unis, Mexique) et le "THORPEX Interactive Grand Global Ensemble", ou TIGGE (sous la coordination de l'Organisation météorologique mondiale).