Potentiel vecteur du champ magnétique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Calcul du potentiel vecteur

En magnétostatique, la loi de Biot et Savart donne l'expression du champ magnétique en fonction des courants électrique présent :

\boldsymbol B (\boldsymbol r) = \frac{\mu_0}{4\pi}\int \frac{\boldsymbol j(\boldsymbol r') \wedge (\boldsymbol r - \boldsymbol r')}{|\boldsymbol r - \boldsymbol r'|^3}\; {\rm d} \boldsymbol r' .

Par ailleurs on sait que, vis-à-vis d'une région centrée autour du rayon vecteur r, on a :

\boldsymbol \nabla_{\boldsymbol  r} \wedge \frac {\boldsymbol j(\boldsymbol r')}{|\boldsymbol r - \boldsymbol r'|} = \frac{1}{|\boldsymbol  r - \boldsymbol r'|} \; \boldsymbol  \nabla_{\boldsymbol r} \wedge \boldsymbol j (\boldsymbol r') - \boldsymbol j(\boldsymbol r') \wedge \boldsymbol \nabla \left(\frac{1}{|\boldsymbol r - \boldsymbol r'|} \right)= - \boldsymbol  j(\boldsymbol r') \wedge \frac{\boldsymbol r - \boldsymbol r'}{|\boldsymbol r - \boldsymbol r'|^3} .

En utilisant cette relation le champ magnétique peut se réexprimer sous la forme :

\boldsymbol B (\boldsymbol r) = \frac{\mu_0}{4\pi}\int \boldsymbol \nabla_{\boldsymbol r} \wedge \left(\frac{\boldsymbol j(\boldsymbol r') }{|\boldsymbol r - \boldsymbol r'|} \right)\; {\rm d} \boldsymbol r' .

Dans cette formule, on peut sortir le rotationnel de l'intégrale, puisque celui-ci s'applique au rayon vecteur r, d'où

\boldsymbol B (\boldsymbol r) = \boldsymbol \nabla \wedge \left(\frac{\mu_0}{4\pi}\int \frac{\boldsymbol j(\boldsymbol r') }{|\boldsymbol r - \boldsymbol r'|}\; {\rm d} \boldsymbol r' \right) .

D'après la définition du potentiel vecteur, on en déduit finalement que

\boldsymbol A (\boldsymbol r) = \frac{\mu_0}{4\pi}\int \frac{\boldsymbol j(\boldsymbol r') }{|\boldsymbol r - \boldsymbol r'|}\; {\rm d} \boldsymbol r' ,

une formule essentiellement identique à celle du potentiel électrique si l'on remplace les charges par les courants.

Page générée en 0.081 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise