De nombreux cristaux naturels présentent des propriétés piézoélectriques. On peut citer le quartz, la topaze, la tourmaline, la berlinite (AlPO4) ou le sucre. Dans la pratique, les matériaux utilisés pour la fabrication des différents dispositifs sont des matériaux de synthèse qu'on peut classer selon leur structure cristallographique ou leur composition chimique.
Les matériaux ferroélectriques de structure pérovskite occupent une large place dans la palette des oxydes piézoélectriques. Ils ont pour formule générale ABO3. On les représente par un empilement d'octaèdres liés par leurs sommets. Les anions oxygène forment les sommets des octaèdres tandis que les cations B et A occupent respectivement leur centre et les sites entre les octaèdres. De nombreux ferroélectriques modèles appartiennent à cette famille : le titanate de plomb PbTiO3, le titanate de baryum BaTiO3, le niobate de potassium KNbO3.
En substituant des cations différents sur les sites A ou B, on peut obtenir des solutions solides. C'est à cette catégorie qu'appartient en particulier le plus couramment utilisé des piézoélectriques, le titano-zirconate de plomb (Pb(ZrxTi1-x)O3 abrégé en PZT), dans lequel les sites B sont occupés par des ions titane et zirconium. On peut également citer des solutions solides entre un relaxeur et le titanate de plomb comme les Pb(Zn1/3Nb2/3)1-xTixO3, Pb(Mg1/3Nb2/3)1-xTixO3, Pb(Sc1/2Nb1/2)1-xTixO3 (abrégés en PZN-xPT, PMN-xPT et PSN-xPT respectivement). C'est dans des cristaux de ce type, pour certaines compositions particulières, que les coefficients piézoélectriques les plus élevés connus sont mesurés.
Le niobate de lithium LiNbO3 et le tantalate de lithium LiTaO3 forment une famille à part. Ils sont tous deux ferroélectriques avec des températures de Curie de 1210°C et 660°C respectivement. Ils ont une structure proche de la maille ilménite de symétrie 3m ; ils n'en diffèrent que par la suite des cations selon leur axe de polarisation (Li-Nb-*-Li-Nb-* contre Fe-Ti-*-Ti-Fe-* pour l'ilménite, où * désigne un site vacant). Ils sont particulièrement utilisés sous forme de monocristaux dans les dispositifs à ondes acoustiques de surface.
Certains matériaux de structure cristalline tungstène-bronze sont également utilisés (Ba2NaNb5O5, Pb2KNb5O15). Parmi les autres matériaux piézoélectriques de synthèse, on peut citer l'orthophosphate de gallium (GaPO4), l'arséniate de gallium (GaAsO4) ou les cristaux langasites (dont le langasite de composition La3Ga5SiO14).
Les semi-conducteurs des groupes III-V de structure zinc-blende et II-VI de structure wurtzite sont également piézoélectriques.
Il existe également des polymères qui présentent des propriétés piézoélectriques. Les plus couramment utilisés sont des polymères de synthèse, notamment le polyvinylidine difluoride (PVDF) (-CH2-CF2-)n et ses dérivés.
Dans la pratique, les polymères sont utilisés également en couche mince de 6 à 25 microns pour la réalisation de transducteurs ou d'hydrophones. Ils ont l'avantage de présenter une impédance acoustique plus faible, de permettre une mise en forme facile et donc peu onéreuse. En contrepartie, leurs coefficients de couplage électromécanique restent modestes : 12 à 15 % pour le PVDF et jusqu'à 30 % pour le co-polymère P(VDF-TrFE). Ils présentent de plus des pertes diélectriques élevées.
Indépendamment de sa composition chimique, un matériau piézoélectrique peut être étudié et utilisé sous différentes formes. Chacune a des spécificités qui peuvent être mises à profit dans une situation donnée.
Un monocristal est un arrangement régulier et périodique d'atomes. C'est sous cette forme que se présentent les matériaux piézoélectriques naturels comme le quartz ou la tourmaline, et c'est également sous cette forme qu'ils ont été utilisés dans les applications de première génération avant la mise au point des céramiques.
Les cristaux ferroélectriques peuvent posséder une structure en domaines. On distinguera alors les monocristaux monodomaines et polydomaines selon qu'une ou plusieurs directions de polarisation coexistent dans le cristal. Dans une description cristallographique, les cristaux polydomaines ne sont pas rigoureusement des monocristaux mais des cristaux maclés ; l'usage est cependant de continuer à parler de monocristal.
Les coefficients piézoélectriques les plus élevés connus à ce jour sont obtenus pour des monocristaux polydomaines. Dans la pratique, ils présentent des inconvénients qui limitent leur utilisation dans beaucoup de dispositifs : coût, disponibilité, etc.
Une céramique est composée de grains soudés entre eux par frittage. Les grains sont orientés statistiquement dans toutes les directions ; leur taille peut être contrôlée par les conditions de fabrication.
C'est la forme la plus utilisée, principalement en raison de leur facilité de fabrication et des nombreuses propriétés qu'on peut obtenir en faisant varier la composition chimique, les paramètres de la fabrication, etc.
Si l'on parvient à donner aux grains de la céramique une orientation préférentielle, on obtient alors une céramique texturée dont les propriétés sont en général intermédiaires entre celles d'une céramique et celles d'un monocristal de même composition.
Dans un composite, le matériau piézoélectrique est divisé et plongé dans une matrice non piézoélectrique (une résine). Les composites ont montré leur intérêt par rapport aux céramiques conventionnelles dans le domaine des transducteurs acoustiques hautes fréquences pour l'imagerie : leur meilleur coefficient de couplage électromécanique et leur impédance acoustique plus adaptée permettent d'améliorer la résolution des images.
La piézoélectricité est une propriété à la base des microsystèmes électromécaniques (MEMS) comme les micromoteurs, les microvalves, les accéléromètres ou les membranes. Les avantages des couches minces piézoélectriques sont notamment leur faible puissance de fonctionnement, l'importance des forces générées et les larges gammes de fréquences d'utilisation. Les couches sont en général fabriquées par un procédé sol-gel et ont une épaisseur comprise typiquement entre 0,5 et 5 microns. Le matériau le plus utilisé est là aussi le PZT. Les coefficients piézoélectriques mesurés sur les couches minces sont plus faibles que ceux du matériau massif à cause de l'effet du substrat.