Pendule simple - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Grandes amplitudes et non linéarité

On introduit progressivement la non-linéarité:

  • d'abord en considérant le deuxième terme du développement du sinus.
  • puis en traitant le cas général, qui nécessite l'utilisation des fonctions elliptiques de Jacobi K, sn, cn, dn.

Formule de Borda

On considère donc l'équation différentielle approchée, dite de Duffing, obtenue en remplaçant sinθ par \theta - {\theta^3 \over 6} :

\ddot{\theta} + \frac{g}{l} \theta - \frac{g}{6l}\theta^3 = 0

On montre alors que la période dépend de l'amplitude. La formule de Borda donne :

T = 2\pi \sqrt \frac{l}{g}(1+ {\theta_0^2 \over 16})

Le terme négligé qui suit est \frac{11\theta_0^4}{3072} + O(\theta_0^6). Cette formule suffit jusqu'à π/2, à 3% de précision (1 + 10/64 = 1.156 au lieu de 1.18). Il en existe plusieurs démonstrations :

  • La méthode des perturbations de Lindstedt-Poincaré consiste à modifier la solution \theta = \theta_0 \sin(\omega_0t)\, en lui ajoutant une petite perturbation \theta_1\, tout en modifiant également la pulsation du mouvement en \omega_0+\omega_1\,. On cherche la valeur à donner à \omega_1\, de façon que l'équation différentielle, simplifiée en se limitant aux perturbations du premier ordre, donne une solution \theta_1\, bornée. Cette valeur de \omega_1\, est -\omega_0{\theta_0^2\over 16} de sorte que la pulsation retenue est \omega = \omega_0(1 - {\theta_0^2 \over 16}). T étant proportionnel à l'inverse de ω, la formule de Borda en découle.
  • Si on suppose l'oscillation quasi-sinusoïdale, la raideur moyenne étant plus faible, on s'attend physiquement à une diminution de la pulsation. En utilisant la formule d'Euler \sin^3x = {3\over 4} \sin x -[{1 \over 4} \sin(3x)]_\mathrm{omis}, et en cherchant \theta=\theta_0 \sin(\omega t)\,, il vient  -\omega^2 +\omega_0^2 -\omega_0^2\frac{\theta_0^2}{6}\frac{3}{4}=0 , d'où \omega^2 = \omega_0^2(1 - {\theta_0^2 \over 8}) et \omega = \omega_0(1 - {\theta_0^2 \over 16}).

d'où par la formule de Wallis : \theta_0^2 \omega^2 \times \frac{1}{2} = \omega_0^2(\theta_0^2 \times \frac{1}{2} - \frac{\theta_0^4}{6} \times \frac{1 \times 3}{2 \times 4}),soit \omega^2 = \omega_0^2(1- \frac{\theta_0^2}{8}).

  • L'équation du mouvement du pendule est complètement intégrable grâce aux fonctions elliptiques, ce qui fait l'objet du paragraphe qui suit. Il suffit alors d'effectuer un développement à l'ordre souhaité de la solution exacte.

Cas pleinement non-linéaire

On considère le cas pleinement non-linéaire. Ecrivons la conservation de l'énergie mécanique

E = \frac{1}{2}m l^2  \dot\theta^2 + mgl(1-\cos\theta)

sous la forme : l^2\dot{\theta^2} + 2gh = 2gH , avec h = l(1-\cos\theta) = 2l \sin^2 \frac{\theta}{2}

Posons H = 2lk2. Il existe trois cas :

  • k < 1 , le pendule oscille : h varie entre 0 et H = l(1 − cosθ0). On a :
\dot\theta^2 = 2{g \over l}(\cos \theta - \cos \theta_0)

Entre 0 et θ0, on a \dot\theta = \sqrt{2{g \over l}(\cos \theta - \cos \theta_0)}. Un petit angle élémentaire dθ est parcouru pendant un intervalle de temps élémentaire dt = \sqrt{\frac{l}{2g}}{\frac{d \theta}{\sqrt{\cos \theta -\cos \theta_0}}}. La période totale des oscillations est donc T = 4 \sqrt{\frac{l}{2g}}\int_0^{\theta_0}{\frac{d \theta}{\sqrt{\cos \theta -\cos \theta_0}}}, et on montre que :  T= 4 \sqrt{\frac{l}{ g}} K (k) = T_0 {2K (k) \over \pi} avec k = \sin \frac{ \theta_0}{2}  \dot{\theta}= 2 k \omega_0 \,\mathrm{cn}(\omega_0t,k) h = H\,\mathrm{sn}^2(\omega_0t,k) où K, sn et cn sont des fonctions elliptiques de Jacobi, K étant tabulée ci-dessous.

θ en degré θ en radian 1 + {\theta^2 \over 16} 1 + {\theta^2 \over 16} + {11\theta^4 \over 3072} {T\over T_0} = {2K(\sin(\theta_0/2)) \over \pi}
10 0,175 1,00 1,00 1,00
20 0,349 1,01 1,01 1,01
30 0,524 1,02 1,02 1,02
40 0,698 1,03 1,03 1,03
50 0,873 1,05 1,05 1,05
60 1,047 1,07 1,07 1,07
70 1,222 1,09 1,10 1,10
80 1,396 1,12 1,14 1,14
90 1,571 1,15 1,18 1,18
100 1,745 1,19 1,22 1,23
110 1,920 1,23 1,28 1,30
120 2,094 1,27 1,34 1,37
130 2,269 1,32 1,42 1,47
140 2,443 1,37 1,50 1,60
150 2,618 1,43 1,60 1,76
160 2,793 1,49 1,71 2.01
170 2,967 1,55 1,83 2,44
180 3,142 1,62 1,96 \infty

La fonction K admet également le développement suivant : K(k) = {\pi \over 2}(1 + {k^2 \over 4} + {9k^4 \over 64} + \cdots + \frac{{2n \choose n}^2}{16^n}k^{2n} + \cdots), où {2n \choose n} est un coefficient binomial. En remplaçant k par \sin {\theta_0 \over 2} et en se limitant aux deux premiers termes, on retrouve la formule de Borda.

  • k = 1 , cas limite correspondant à θ0 = π. On a :

Temps infini pour monter à la verticale \theta = 4 \arctan (e^{\omega_0t})- \pi \dot{\theta}=\frac{2\omega_0}{\mathrm{ch}(\omega_0t)} h = 2l \,\mathrm{th}^2(\omega_0t) où ch et th sont respectivement le cosinus et la tangente hyperbolique.

  • k > 1 , le pendule tournoie : v2 varie entre 2g(H − 2l) et 2gH. La période pour effectuer un tour est T_0 {1 \over \pi k}K({1\over k}). Si H est très grand, compte tenu du fait que K(0) vaut π/2, on pourra vérifier que la période tend vers {2\pi l} \over V.

Il est parfois judicieux de prendre pour période le temps mis pour faire deux tours. En effet, pour k légèrement inférieur à 1, le pendule effectue une trajectoire de longueur voisine de 4π. Avec cette convention, on a alors T = 2T_0 {1 \over \pi k}K({1\over k}) (Voir Chenciner (Pendule à Gazette).

On a également :  \dot{\theta}= 2k \omega_0 \,\mathrm{dn}(k\omega_0t,1/k) h = 2l \,\mathrm{sn}^2(k\omega_0t,1/k) où sn et dn sont des fonctions elliptiques de Jacobi.

Plan de phase

On appelle orbite de phase la représentation paramétrée en temps du couple (θ(t),\dot{\theta}(t)), ou de fonctions monotones de celles-ci. Dans le graphe ci-dessous, θ est en abscisse et \dot \theta en ordonnée. On discerne :

  • la région dite d'oscillation (en noir), dite en œil d'Horus ou en œil en amande. Chaque orbite est parcourue dans le sens inverse au sens trigonométrique et tourne autour des points d'équilibre stables S, correspond aux valeurs 0, 2π, 4π, etc de θ0.
  • les deux régions de révolution (en rouge) , soit positive (en haut), soit négative (en bas), correspondant au cas où le pendule tourne autour du point O.
  • la séparatrice, en bleu, correspondant au cas limite où θ0 vaut π.
  • les points d'équilibre stable S déjà évoqués.
  • Les points d'équilibre instable I correspondant aux valeurs π, 3π, etc de θ0. Il faut un temps infini pour parcourir une orbite qui va d'un point I à un autre.

Il paraît clair dorénavant que si l'on établit un mécanisme quelconque qui peut soustraire ou ajouter une petite énergie au pendule au voisinage de l'élongation π, on aura un phénomène difficile à prévoir même s'il est déterministe: exemple , placer un tout petit pendule accroché à la masse m: on a ainsi un pendule double ; les oscillations non-linéaires de ce pendule, lesté d'un tel minuscule pendule, laissent pantois quand on les enregistre: Poincaré fut , avec Liapunov , un des premiers à considérer ce genre de problème; puis Birkhoff; puis l'école russe entraînée par la haute figure de Kolmogorov, et puis celle de Bogoliubov et de Krylov, puis Arnold,... jusqu'au moment où un article de 1971 de Ruelle et Takens vînt suggérer que la situation était normale dès que l'espace des phases était à trois dimensions ou plus [on utilise parfois l'expression 1.5 degré de liberté].

Page générée en 0.089 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise