Paradoxe de Condorcet - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Exemples

Exemple 1 Les préférences

Considérons un système de préférence majoritaire à 3 critères. Des objets sont jugés sur 3 critères et l'on préfère un objet à un autre dès lors que 2 critères sont meilleurs.

Considérons les 3 objets suivants dans un système de préférence croissant (la plus haute note est la meilleure) :

A(1,3,2)
B(2,1,3)
C(3,2,1)

Finalement :

  • B est préféré à A car meilleur sur les critères 1 et 3.
  • C est préféré à B car meilleur sur les critères 1 et 2.
  • A est préféré à C car meilleur sur les critères 2 et 3.

B est donc préféré à A qui est lui-même préféré à C qui est lui-même préféré à B.

Exemple 2 Le vote

Considérons par exemple une assemblée de 60 votants ayant le choix entre trois propositions A, B et C. Les préférences se répartissent ainsi (en notant A > B, le fait que A est préféré à B) :

23 votants préfèrent : A > B > C
17 votants préfèrent : B > C > A
2 votants préfèrent : B > A > C
10 votants préfèrent : C > A > B
8 votants préfèrent : C > B > A

Dans les comparaisons majoritaires par paires, on obtient :

33 préfèrent A > B contre 27 pour B > A
42 préfèrent B > C contre 18 pour C > B
35 préfèrent C > A contre 25 pour A > C

Ce qui conduit à la contradiction interne A > B > C > A .

Dans un cas comme celui-ci, Condorcet propose d'éliminer le vainqueur le moins performant (ici A car A >B remporte le plus faible score) et de faire un duel entre B et C qui sera remporté par B. Mais d'autres solutions sont possibles (voir Méthode Condorcet, Résolution des conflits).

L'élection présidentielle française de 1974 est parfois citée comme exemple du paradoxe de Condorcet :[citation nécessaire] François Mitterrand, Valéry Giscard d'Estaing et Jacques Chaban-Delmas avaient obtenu respectivement au premier tour 43,2%, 32,6% et 15,1% des suffrages. Au second tour, c'est Giscard d'Estaing, pourtant arrivé en deuxième position lors du premier tour, qui est élu avec 50,81% des voix. Il faut néanmoins préciser que plus que l'illustration d'un paradoxe, cette situation illustre la logique du scrutin uninominal majoritaire à deux tours qui favorisent les systèmes d'alliances entre partis et l'appel au report des voix. La logique étant la poursuite d'une majorité absolue et non la prise en compte d'une majorité relative comme dans le système anglo-saxon du scrutin majoritaire à un tour.

Bibliographie

  • Arrow K. J, Social Choice and Individual Values, London, 1951
  • Granger G.G., La mathématique sociale du Marquis de Condorcet, Paris, 1956
  • Sen A. K., Collective Choice and Social Welfare, London, 1970

Polémiques

Contrairement à une opinion répandue (entre autres par Élisabeth et Robert Badinter dans leur biographie de Condorcet), ce paradoxe ne met en cause que la cohérence de certains systèmes de vote et non celle de la démocratie elle-même.

Il faut attendre le théorème d'impossibilité d'Arrow au XXe siècle pour la démonstration que le problème n’est pas limité au vote majoritaire mais lié aux difficultés de l’agrégation des préférences. Il n’existe aucune procédure de décision collective qui puisse satisfaire quatre conditions assez raisonnables. Certains auteurs y voient un problème inhérent à la démocratie.

Dans son essai, Condorcet expose également la méthode de Condorcet, une méthode conçue pour simuler des élections par paires de candidats. Il indique toutefois que des questions de temps pratique du dépouillement rendent la méthode qu’il envisage difficile à réaliser, en tout cas à son époque. Il eut de nombreuses discussions avec Jean-Charles de Borda, lors desquelles ils comparaient leurs méthodes respectives. Cette méthode Condorcet est utilisée de nos jours en data mining.

Nicolas de Condorcet indique qu'il n'a pas trouvé de système simple permettant de respecter ces critères ; or rien ne nous oblige à adopter un système simple dans les deux cas suivants :

  • Quand la population votante est de petite taille
  • Quand elle est de grande taille et que des moyens informatiques permettent de gérer cette complexité. Attention: il faudra dans ce dernier cas trouver impérativement un moyen de permettre une vérification par l'électeur que le programme informatique fait bien ce qu'on attend de lui, ce qui est du ressort de la sémantique dénotationnelle (voir Christopher Strachey) et encore expérimental pour le moment, et suppose que le code du système soit auditable (par exemple en utilisant un système sous licence logicielle libre ou open-source).
Page générée en 0.110 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise